USTHB 2016-2017 Semestre 2 Faculté de Mathématiques

Analyse complexe 2^{ème} année Lic Math

Test n°1 - 15 avril 2017. Duree : 30 minutes
Nom et Prénom : Matricule :
Exercice 1 (4 pts.):
a) Trouver $u(x,y)$ et $v(x,y)$ tels que $f(z) = u(x,y) + iv(x,y)$ pour 1) $f(z) = z^2$, 2) $f(z) = \cos z$.
b) Calculer 1) Log $(1-i)$, 2) $(1-i)^{2i}$.
Réponse.

Exercice 2 (6 pts.): Soit $f(z) = u(x, y) + iv(x, y)$ avec $u(x, y) = x^3 - 3\lambda xy^2 + 2x + 1$, $\lambda \in \mathbb{R}$. a) Donner une condition nécessaire et suffisante sur λ pour que $f = u + iv$ soit holomorphe sur \mathbb{C} .
b) Déterminer alors la fonction f .
c) Exprimer $f(z)$ à l'aide de la variable z .
Réponse.
2/3

Exercice 3 (5 pts.): Soit D un domaine (ouvert connexe) de \mathbb{C} . Soient f et g deux fonctions holomorphes sur D telles que $f(z) + \overline{g(z)} \in \mathbb{R}$ pour tout $z \in D$.
Montrer qu'il existe $c \in \mathbb{R}$ telle que $f(z) = c + g(z)$ pour tout $z \in D$.
Réponse.
3/3
I