USTHB 2017-2018 Semestre 2 Faculté de Mathématiques

Analyse complexe 2^{ème} année Lic Math

Série d'exercices n° 1 : Fonctions complexes

Exercice 1:

Soit $w = f(z) = z^2$.

- a) Montrer que la droite joignant les points $z_1 = -2 + i$ et $z_2 = 1 3i$ est transformée par $w = f(z) = z^2$ en une courbe passant par $f(z_1)$ et $f(z_2)$ dont on déterminera l'équation.
- b) Si c_1 et c_2 sont des constantes réelles quelconques, déterminer les ensembles de points du plan de la variable z qui sont transformés en les droites (1) $u = c_1$, (2) $v = c_2$ du plan de la variable w, au moyen de la fonction f.

$\underline{\text{Exercice } 2}$:

Soit $w^5 = z$ et supposons que pour la valeur particulière $z = z_1$ nous ayons $w = w_1$.

- a) Si partant du point z_1 dans le plan de la variable z on décrit dans le sens direct un contour fermé entourant l'origine, montrer que la valeur de w après retour en z_1 est $w_1e^{\frac{2\pi i}{5}}$.
- b) Quelles sont les valeurs de w en z_1 après 2, 3, ..., tours complets autour de l'origine?
- c) Traiter a) et b) si le contour n'entoure pas l'origine.

Exercice 3:

Soit $f(z) = z^3$, en utilisant la définition de la limite, montrer que $\lim_{z \to i} f(z) = -i$.

Exercice 4:

Calculer les limites suivantes :

a)
$$\lim_{z \to -i\frac{\pi}{2}} \frac{e^{2z} + 1}{e^z + i}$$
, b) $\lim_{z \to i} \frac{z^{2n} + 1}{z - i}$, $n \in \mathbb{N}$.

Exercice 5:

Étudier la continuité de la fonction f définie sur $\mathbb C$ par

$$f(z) = \begin{cases} \frac{\left(\operatorname{Re}(z^2)\right)^2}{|z^2|} & \text{si } z \neq 0 \\ 0 & \text{si } z = 0 \end{cases}.$$

Exercice 6:

Étudier la continuité de la fonction $f:\mathbb{C} \to \mathbb{C}$ définie par

f(z) = f(x+iy) =le nombre des racines complexes non reélles du polynôme $p(t) = t^2 + xt + y$.

Exercice 7:

Séparer les parties réelles et imaginaires des fonctions suivantes :

a)
$$f(z) = e^{-z}$$
, b) $f(z) = \sin z$, c) $f(z) = \operatorname{Ch} z$, d) $f(z) = 2^{z^2}$, e) $f(z) = z^{2-i}$.

Exercice 8:

Démontrer les relations suivantes :

a)
$$|\sin z| = \sqrt{\cosh^2 y - \cos^2 x}$$
, **b)** $|\cos z| = \sqrt{\cosh^2 y - \sin^2 x}$,

c)
$$|\operatorname{Sh} z| = \sqrt{\operatorname{Ch}^2 x - \cos^2 y}, \, \mathbf{d}$$
 $|\operatorname{Ch} z| = \sqrt{\operatorname{Ch}^2 x - \sin^2 y}.$

Exercice 9:

Démontrer que si $|\sin z| \le 1$ pour tout z, alors z est réel.

Exercice 10:

Résoudre dans $\mathbb C$ les équations suivantes :

a)
$$\operatorname{Im}(\sin z) = 0$$
, b) $\operatorname{Re}(\operatorname{Sh} z) = 0$, c) $\sin z = \frac{4}{3}i$, d) $\operatorname{Sh} z = \frac{i}{2}$, e) $e^z = -2$.

Exercice 11:

Démontrer que $e^{(\text{Log }z)}=z$ et montrer que l'égalité $\text{Log }(e^z)=z$ n'est pas toujours vérifiée.

Exercice 12:

Calculer **a)** Log (1+i), **b)** i^{i} , **c)** $(1-i)^{3-3i}$.