$\mathrm{C}^{\mathrm{h^a}^{\mathrm{p_i}}\mathrm{t_{r_e}}}\!3$

Équations différentielles du second ordre

Sommaire

3.1	Équations différentielles du second ordre incomplètes 29		
	3.1.1	Équations du type $y'' = f(t, y') \dots 29$)
	3.1.2	Équations du type $y'' = f(y, y')$)
	3.1.3	Équations du type $y'' = f(y)$)
3.2	Équ	ations différentielles type-homogènes du second ordre 30)
3.3	Équ	ations différentielles linéaires du second ordre	•
	3.3.1	Équations linéaires homogènes du second ordre	<u>}</u>
	3.3.2	Équations linéaires non homogènes du second ordre	}
3.4	Équ	ations linéaires du second ordre à coefficients constants 35)
	3.4.1	Recherche d'une solution particulière pour des seconds membres spécifiques	36
	3.4.2	Solution particulière par la méthode de variation des constantes 39)
3.5	Exercices		
3.6	3.6 Solution des exercices		

La forme générale d'une équation différentielle du second ordre est F(t, y, y', y'') = 0. Sa forme normale ou résolue s'écrit y'' = f(t, y, y'). Il existe très peu de cas où on sait résoudre

explicitement une équation du second ordre : même les équations linéaires du second ordre sans second membre ne se résolvent pas explicitement en général.

La solution générale y dépend en général de deux paramètres $\lambda, \mu \in \mathbb{R}$ qui apparaissent le plus souvent comme des constantes d'intégration.

3.1 Équations différentielles du second ordre incomplètes

Ces équations se ramènent à des équations du premier ordre.

3.1.1 Équations du type y'' = f(t, y')

Si on considère la nouvelle fonction inconnue v=y', l'équation y''=f(t,y') se ramène à l'équation du premier ordre v'=f(t,v). La solution générale de cette dernière sera de la forme $v_{\lambda}\left(t\right),\ \lambda\in\mathbb{R},$ et on obtient donc $y\left(t\right)=\int v_{\lambda}\left(t\right)dt+\mu,\ \lambda,\mu\in\mathbb{R}.$

Exemple 30

Cherchons les solutions de l'équation $y'' = \frac{1}{t}y' + 3t$.

Posons v=y' et remplaçons dans notre équation, on obtient $v'=\frac{1}{t}v+3t$. En utilisant la méthode de variation de la constante on trouve $v\left(t\right)=3t^2+\lambda t,\ \lambda\in\mathbb{R}$. Il vient $y\left(t\right)=t^3+\lambda t^2+\mu,\ \lambda,\mu\in\mathbb{R}$.

3.1.2 Équations du type y'' = f(y, y')

La méthode consiste à prendre y comme nouvelle variable et v=y' comme variable fonction inconnue en la variable y, c'est-à-dire $v: y \mapsto v(y) = y'$.

Il peut y avoir des solutions constantes $y(t) = y_0$, auquel cas y ne peut être choisi comme variable. On a donc des solutions singulières $y(t) = y_j$ avec $f(y_j, 0) = 0$.

Dans le cas général, on a $y'' = \frac{dy'}{dt} = \frac{dy'}{dy} \cdot \frac{dy}{dt} = \frac{dv}{dy} \cdot v$.

L'équation y'' = f(y, y') se ramène alors à l'équation du premier ordre $v \frac{dv}{dy} = f(y, v)$. La résolution de cette dernière donne une solution générale $v_{\lambda}(y)$, $\lambda \in \mathbb{R}$. On doit ensuite résoudre $y' = v_{\lambda}(y)$ ou $\frac{dy}{v_{\lambda}(y)} = dt$. D'où la solution générale

$$\int \frac{dy}{v_{\lambda}(y)} = t + \mu, \ \lambda, \mu \in \mathbb{R}.$$

Exemple 31

Cherchons les solutions de l'équation y'' = 2yy'.

Par le changement de fonction v(y) = y', on a $y'' = v \frac{dv}{dy} = 2yv$ qui est une équation à variables séparées de fonction inconnue v(y) ayant pour solution $v = y^2 + \lambda$, $\lambda \in \mathbb{R}$. Ensuite, en résolvant l'équation $y' = y^2 + \lambda$, qui est une équation de Riccati, on trouve $y(t) = \lambda \operatorname{tg}(\lambda t + \mu)$ et $y(t) = -\lambda \operatorname{coth}(\lambda t + \mu)$ $\lambda, \mu \in \mathbb{R}$. De plus $y = \lambda$ sont des solutions singulières.

3.1.3 Équations du type y'' = f(y)

C'est un cas particulier du cas précédent, mais on peut ici préciser davantage la méthode de résolution. On a en effet y'y'' = y'f(y), et en intégrant il vient $\frac{1}{2}(y')^2 = \varphi(y) + \lambda$, $\lambda \in \mathbb{R}$, où φ est une primitive de f. On obtient donc

$$y' = \pm \sqrt{2(\varphi(y) + \lambda)}$$
 ou $\frac{dy}{\pm \sqrt{2(\varphi(y) + \lambda)}} = dt$,

d'où la solution générale est sous forme

$$\pm \int \frac{dy}{\sqrt{2(\varphi(y) + \lambda)}} = t + \mu, \ \mu \in \mathbb{R}.$$

Exemple 32

On considère l'équation $y'' = 2e^y$.

En multipliant par y' on a $y'y''=2y'e^y$, et donc en intégrant il vient $\frac{1}{2}(y')^2=2e^y+\lambda,\ \lambda\in\mathbb{R}$. Alors

$$y' = \pm \sqrt{4e^y + 2\lambda}$$
, ou $\frac{dy}{\pm \sqrt{4e^y + 2\lambda}} = dt, \lambda \in \mathbb{R}$.

En intégrant et après simplification on obtient

$$y(t) = 2 \operatorname{Log}\left(\frac{\lambda}{\cos(\lambda t + \mu)}\right), \quad \lambda, \mu \in \mathbb{R}.$$

3.2 Équations différentielles type-homogènes du second ordre

Ce sont les équations différentielles qui peuvent se mettre sous la forme

$$F\left(t, \frac{y'}{y}, \frac{y''}{y}\right) = 0. \tag{3.1}$$

La résolution de ces équations se fait en effectuant un changement de fonction inconnue en posant $u\left(t\right)=\frac{y'\left(t\right)}{y\left(t\right)}$, et donc $\frac{y''}{y}=u'+u^2$. On est alors ramené à une équation différentielle du premier ordre $F\left(t,u,u'+u^2\right)=0$.

Exemple 33

Soit l'équation $yy'' - (y')^2 + 6ty^2 = 0$.

On peut écrire cette équation sous la forme $\frac{y''}{y} - \left(\frac{y'}{y}\right)^2 + 6t = 0$ soit $F\left(t, \frac{y'}{y}, \frac{y''}{y}\right) = 0$ avec $F\left(t, z, w\right) = w - z^2 + 6t$.

On effectue un changement de fonction inconnue en posant $u=\frac{y'}{y}$. D'où $\frac{y''}{y}=u'+u^2$ et donc l'équation $\frac{y''}{y}-\left(\frac{y'}{y}\right)^2+6t=0$ devient u'+6t=0. D'où $u=-3t^2+\lambda, \lambda\in\mathbb{R}$ et donc $\frac{y'}{y}=-3t^2+\lambda$ qui est une équation différentielle du premier ordre ayant pour solution générale $y=\mu e^{-t^3+\lambda t},\ \lambda,\mu\in\mathbb{R}$.

3.3 Équations différentielles linéaires du second ordre

Considérons l'équation différentielle linéaire du second ordre

$$y'' + a(t)y' + b(t)y = c(t). (3.2)$$

Définition 12 (Solutions indépendantes)

Deux solutions y_1 et y_2 de l'équation (3.2) sont indépendantes sur un intervalle I s'il n'existe pas de réel k tel que pour tout $t \in I$: $y_2(t) = ky_1(t)$.

Remarque 13

Les fonctions y_1 et y_2 sont indépendantes cela signifie linéairement indépendantes au sens des espaces vectoriels.

Définition 14 (Wronskien)

Soient deux fonctions dérivables $t \mapsto y_1(t)$ et $t \mapsto y_2(t)$ sur un intervalle I.

Le wronskien de ces deux fonctions est défini à l'aide d'un déterminant

$$W(y_{1}(t), y_{2}(t)) = \begin{vmatrix} y_{1}(t) & y_{2}(t) \\ y'_{1}(t) & y'_{2}(t) \end{vmatrix} = y_{1}(t) y'_{2}(t) - y'_{1}(t) y_{2}(t).$$

Les deux fonctions dérivables $t \mapsto y_1(t)$ et $t \mapsto y_2(t)$ sont linéairement indépendantes si et seulement si leur wronskien $W(y_1, y_2)$ n'est pas identiquement nul.

Exemple 34

Les fonctions $t \mapsto \sin t$ et $t \mapsto e^t$ sont indépendantes.

Les fonctions $f: t \mapsto 3e^{-t} \sin t$ et $g: t \mapsto 5e^{-t} \sin t$ ne le sont pas puisque $g = \frac{5}{3}f$.

3.3.1 Équations linéaires homogènes du second ordre

Si $c(t) \equiv 0$ on dit que l'équation (3.2) est linéaire homogène ou sans second membre

$$y'' + a(t)y' + b(t)y = 0. (3.3)$$

Cas où l'on connaît deux solutions particulières indépendantes :

Si y_1 et y_2 sont deux solutions indépendantes de l'équation différentielle y'' + a(t)y' + b(t)y = 0, alors la solution générale de cette équation différentielle est $y = \lambda y_1 + \mu y_2$, λ et μ étant des constantes arbitraires.

Exemple 35

Pour l'équation différentielle homogène $t^2y''-2y=0$, en cherchant des solutions sous la forme $y(t)=t^{\alpha}, \alpha\in\mathbb{R}$, on trouve que $y_1(t)=t^2$ et $y_2(t)=\frac{1}{t}$ sont des solutions particulières. D'après la propriété ci-dessus, on peut en déduire que la solution générale de l'équation différentielle est de la forme $y(t)=\lambda t^2+\frac{\mu}{t}, \ \lambda,\mu\in\mathbb{R}$.

Cas où l'on connaît une solution particulière :

Considérons l'équation différentielle homogène y'' + a(t)y' + b(t)y = 0 pour laquelle on connaît une solution particulière y_1 .

La méthode pour trouver la solution générale consiste à effectuer un changement de fonction en posant $y(t) = y_1(t) v(t)$, où v étant la nouvelle fonction inconnue. Il vient

$$y_{1}''v + 2y_{1}'v' + v''y_{1} + a(t)(y_{1}'v + y_{1}v') + b(t)y_{1}v = 0.$$

Comme y_1 est solution de notre équation différentielle, alors on obtient

$$y_1v'' + (2y_1' + a(t)y_1)v' = 0.$$

La fonction w = v' est donc solution d'une équation différentielle linéaire du premier ordre, qui se peut se réécrire

$$\frac{w'}{w} = \frac{v''}{v'} = -2\frac{y'_1(t)}{y_1(t)} - a(t).$$

La solution générale est donnée par $w(t) = \lambda (y_1(t))^{-2} e^{-\int a(t)dt}, \lambda \in \mathbb{R}$.

D'où $v(t) = \int w(t) dt + \mu$, $\lambda, \mu \in \mathbb{R}$. La solution générale de y'' + a(t)y' + b(t)y = 0 est donc

$$y(t) = y_1(t) \int w(t) dt + \mu y_1(t), \lambda, \mu \in \mathbb{R}.$$

Exemple 36

Considérons l'équation (t+1)y'' - (2t-1)y' + (t-2)y = 0.

On peut vérifier que $y_1(t) = e^t$ est une solution particulière.

Cherchons la solution générale sous la forme $y(t) = e^t v(t)$, alors

$$(t+1)\left(e^{t}v + 2e^{t}v' + v''e^{t}\right) - (2t-1)\left(e^{t}v + e^{t}v'\right) + (t-2)e^{t}v = 0.$$

Apres simplification, on trouve (t+1)v'' = -3v'. En posant w = v', on a (t+1)w' = -3w équation différentielle du premier ordre ayant pour solution $w(t) = \frac{\lambda}{(t+1)^3}$. D'où

$$v(t) = \int w(t) dt + \mu = \frac{\lambda}{(t+1)^2} + \mu \quad \lambda, \mu \in \mathbb{R}.$$

La solution générale de notre équation différentielle est donc

$$y(t) = \left(\frac{\lambda}{(t+1)^2} + \mu\right) e^t, \quad \lambda, \mu \in \mathbb{R}.$$

3.3.2 Équations linéaires non homogènes du second ordre

Si $c(t) \neq 0$ on dit que l'équation y'' + a(t)y' + b(t)y = c(t) est linéaire non homogène ou avec second membre. L'équation y'' + a(t)y' + b(t)y = 0 est l'équation homogène associée.

Comme pour les équations différentielles linéaires du premier ordre, la solution générale de l'équation non homogène y'' + a(t)y' + b(t)y = c(t) est égale à la somme de la solution générale de l'équation homogène et d'une solution particulière de l'équation non homogène.

Variations des constantes :

Supposons qu'on connaisse la solution générale $y = \lambda y_1 + \mu y_2, \lambda, \mu \in \mathbb{R}$ de l'équation homogène y'' + a(t)y' + b(t)y = 0. On peut alors chercher la solution générale par la méthode de variation

des constantes.

Le principe de cette méthode est de considérer λ et μ comme fonctions de la variable t. Cherchons la solutions sous la forme $y(t) = \lambda(t) y_1(t) + \mu(t) y_2(t)$. En reportant cette fonction dans l'équation non homogène, on a après simplification

$$2\lambda' y_1' + 2\mu' y_2' + \lambda'' y_1 + \mu'' y_2 + a(t)(\lambda' y_1 + \mu' y_2) = c(t).$$

En imposant la condition supplémentaire $\lambda' y_1 + \mu' y_2 = 0$, on voit que $\lambda'' y_1 + \mu'' y_2 = -(\lambda' y_1' + \mu' y_2')$ et donc les dérivées λ' et μ' doivent vérifier le système

$$\begin{cases} \lambda' y_1 + \mu' y_2 = 0, \\ \lambda' y_1' + \mu' y_2' = c(t). \end{cases}$$

En résolvant ce système on obtient

$$\lambda' = \frac{-c(t) y_2}{y_1 y_2' - y_1' y_2}, \quad \mu' = \frac{c(t) y_1}{y_1 y_2' - y_1' y_2}.$$

D'où la solution générale de l'équation non homogène $y'' + a\left(t\right)y' + b\left(t\right)y = c\left(t\right)$ est

$$y = y_1 \int \frac{-c(t)y_2}{y_1y_2' - y_1'y_2} dt + y_2 \int \frac{c(t)y_1}{y_1y_2' - y_1'y_2} dt + \alpha y_1 + \beta y_2, \alpha, \beta \in \mathbb{R}.$$

Exemple 37

Considérons l'équation $y'' - \frac{2}{t^2}y = te^t$. En cherchant des solutions pour l'équation homogène $y'' - \frac{2}{t^2}y == 0$ sous la forme $y(t) = t^{\alpha}$, $\alpha \in \mathbb{R}$, on trouve que $y_1(t) = t^2$ et $y_2(t) = \frac{1}{t}$ sont deux solutions particulières indépendantes. D'où la solution générale de l'équation homogène est de la forme $y(t) = \lambda t^2 + \frac{\mu}{t}$, $\lambda, \mu \in \mathbb{R}$. On va donc chercher la solution générale de l'équation non homogène sous la forme $y(t) = t^2 \lambda(t) + \frac{\mu(t)}{t}$. Les dérivées λ' et μ' doivent vérifier le système

$$\begin{cases} \lambda' y_1 + \mu' y_2 = 0, \\ \lambda' y_1' + \mu' y_2' = c(t), \end{cases} \text{ ou } \begin{cases} t^2 \lambda' + \frac{\mu'}{t} = 0, \\ 2t \lambda' - \frac{\mu'}{t^2} = te^t. \end{cases}$$

On en déduit que $\lambda' = \frac{1}{3}e^t, \mu' = \frac{-1}{3}t^3e^t$ et donc

$$\lambda\left(t\right) = \frac{1}{3}e^{t} + \alpha, \quad \mu\left(t\right) = \frac{1}{3}e^{t}\left(-t^{3} + 3t^{2} - 6t + 6\right) + \beta, \quad \alpha, \beta \in \mathbb{R}.$$

D'où la solution générale de l'équation non homogène est

$$y(t) = e^t \left(t - 2 + \frac{2}{t}\right) + \lambda t^2 + \frac{\mu}{t}, \quad \lambda, \mu \in \mathbb{R}.$$

3.4 Équations linéaires du second ordre à coefficients constants

Une équation différentielle du second ordre linéaire à coefficients constants, est une équation du type

$$y'' + ay' + by = c(t),$$

où les coefficients a et b sont des constantes réelles, $t \mapsto c(t)$ est une fonction donnée continue sur un intervalle $I \subset \mathbb{R}$.

Comme dans le cas à coefficients non constants, on commence par résoudre l'équation homogène associée ou sans second membre

$$y'' + ay' + by = 0.$$

On cherche des solutions sous la forme $y=e^{rt}, r\in\mathbb{R}$. En substituant dans notre équation homogène, on obtient

$$\left(r^2 + ar + b\right)e^{rt} = 0.$$

Comme la fonction exponentielle n'est jamais nulle, pour avoir une solution il faut que

$$r^2 + ar + b = 0.$$

Cette équation se nomme l'équation caractéristique (ou auxiliaire) associée à notre équation homogène. Les valeurs de r se trouvent aisément à l'aide de la formule quadratique

$$r = \frac{-a \pm \sqrt{a^2 - 4b}}{2}.$$

Trois cas peuvent alors se produire:

• Si $a^2 - 4b > 0$, on trouve deux racines réelles distinctes r_1 et r_2 , ce qui montre que les fonctions $y_1 = e^{r_1t}$ et $y_2 = e^{r_2t}$ sont deux solutions particulières indépendantes. La solution générale de l'équation homogène y'' + ay' + by = 0 sera alors

$$y_h = \lambda e^{r_1 t} + \mu e^{r_2 t}, \quad \lambda, \mu \in \mathbb{R}.$$

• Si $a^2 - 4b = 0$, on trouve une racine réelle double r_0 . Dans ce cas, l'obtention d'une solution réelle r_0 montre que la fonction $y_1 = e^{r_0 t}$ est une solution particulière, d'autre part on peut montrer que $y_2 = te^{r_0 t}$ est aussi solution. On en déduit alors que la solution générale de l'équation homogène est de la forme

$$y_h = (\lambda t + \mu) e^{r_0 t}, \quad \lambda, \mu \in \mathbb{R}.$$

• Si $a^2-4b<0$ on trouve deux racines complexes distinctes et conjuguées de forme générale $r_1=\alpha-i\beta$ et $r_2=\alpha+i\beta$, $\alpha,\beta\in\mathbb{R}$. Alors $y_1=e^{\alpha t}\cos{(\beta t)}$ et $y_2=e^{\alpha t}\sin{(\beta t)}$ sont deux solutions particulières indépendantes de l'équation homogène. D'où la solution homogène générale est

$$y_h = e^{\alpha t} (\lambda \cos(\beta t) + \mu \sin(\beta t)), \quad \lambda, \mu \in \mathbb{R},$$

que l'on peut aussi mettre sous la forme

$$y_h = \lambda e^{\alpha t} \cos(\beta t + \mu)$$
 ou $y_h = \lambda e^{\alpha t} \sin(\beta t + \mu)$, $\lambda, \mu \in \mathbb{R}$.

Exemple 38

a) y'' + 4y' + 3y = 0.

L'équation caractéristique est $r^2 + 4r + 3 = 0$, on a $r_1 = -3, r_2 = -1$. Alors la solution générale est $y = \lambda e^{-3t} + \mu e^{-t}$, $\lambda, \mu \in \mathbb{R}$.

b)
$$y'' + 4y' + 9y = 0$$
.

- b) L'équation caractéristique est $r^2 + 4r + 9 = 0$, on a $r_1 = -2 i\sqrt{5}$, $r_2 = -2 + i\sqrt{5}$. Alors la solution générale est $y = e^{-2t} \left(\lambda \cos\left(\sqrt{5}t\right) + \mu \sin\left(\sqrt{5}t\right)\right)$, $\lambda, \mu \in \mathbb{R}$. c) y'' + 6y' + 9y = 0.
- c) L'équation caractéristique est $r^2 + 6r + 9 = 0$, on a $r_1 = -3$ une racine double. Alors la solution générale est $y = (\lambda t + \mu) e^{-3t}$, $\lambda, \mu \in \mathbb{R}$.

Ensuite, il faut trouver une solution particulière y_p de l'équation avec le second membre

$$y'' + ay' + by = c(t).$$

La solution générale sera $y = y_p + y_h$.

3.4.1 Recherche d'une solution particulière pour des seconds membres spécifiques

Dans la pratique, c'est la forme de la fonction $c\left(t\right)$ qui nous indiquera sous quelle forme chercher la solution particulière.

• Si c(t) = p(t) est un polynôme de degré n:

Chercher une solution q(t) qui soit un polynôme de degré n si $b \neq 0$, de degré n+1 si b=0 et $a \neq 0$, et de degré n+2 si a=0 et b=0.

Exemple 39

Cherchons une solution de l'équation $y'' - y' - 2y = 2t^2$.

L'équation caractéristique $r^2-r-2=0$ admet les racines -1 et 2. La solution générale de l'équation homogène associée est donc $y_h=\lambda e^{-t}+\mu e^{2t},\ \lambda,\mu\in\mathbb{R}.$

Cherchons une solution particulière sous forme d'un polynôme du second degré $y_p = \alpha t^2 + \beta t + \gamma$. On a $y_p' = 2\alpha t + \beta$, $y_p'' = 2\alpha$.

En remplaçant dans l'équation, on trouve : $-2\alpha t^2 - 2(\alpha + \beta)t + 2\alpha - \beta - 2\gamma = 2t^2$. D'où $\alpha = -1, \beta = 1, \gamma = -\frac{3}{2}$. Une solution particulière est donc $y_p = -t^2 + t - \frac{3}{2}$. D'où la solution générale est $y = -t^2 + t - \frac{3}{2} + \lambda e^{-t} + \mu e^{2t}, \lambda, \mu \in \mathbb{R}$.

• Si c(t) est de la forme Ke^{rt} , avec $r^2 + ar + b \neq 0$:

Chercher une solution de la forme αe^{rt} .

Exemple 40

Cherchons une solution de l'équation $y'' - y' - 2y = e^{3t}$.

La solution générale de l'équation homogène associée est $y_h = \lambda e^{-t} + \mu e^{2t}$, $\lambda, \mu \in \mathbb{R}$. Comme 3 n'est pas racine du polynôme caractéristique $r^2 - r - 2$, cherchons une solution particulière sous la forme $y_p = \alpha e^{3t}$. On a $y_p' = 3\alpha e^{3t}$, $y_p'' = 9\alpha e^{3t}$.

En remplaçant dans l'équation, on trouve $(9\alpha - 3\alpha - 2\alpha)e^{3t} = e^{3t}$, d'où $\alpha = \frac{1}{4}$. Une solution particulière est alors $y_p = \frac{1}{4}e^{3t}$. D'où la solution générale est $y = \frac{1}{4}e^{3t} + \lambda e^{-t} + \mu e^{2t}$, $\lambda, \mu \in \mathbb{R}$.

• Si c(t) est de la forme Ke^{rt} , avec $r^2 + ar + b = 0$:

Chercher une solution de la forme $\alpha t e^{rt}$ (ou $\alpha t^2 e^{rt}$ si r est racine double).

Exemple 41

Cherchons une solution de l'équation $y'' - y' - 2y = e^{2t}$.

La solution générale de l'équation homogène associée est $y_h = \lambda e^{-t} + \mu e^{2t}$, $\lambda, \mu \in \mathbb{R}$. Comme 2 est racine simple du polynôme caractéristique $r^2 - r - 2$, cherchons une solution particulière sous la forme $y_p = \alpha t e^{2t}$.

On a $y_p' = (2\alpha t + \alpha) e^{2t}$, $y_p'' = (4\alpha t + 4\alpha) e^{2t}$. En remplaçant dans l'équation, on trouve $\alpha = \frac{1}{3}$. D'où la solution générale est $y = \lambda e^{-t} + \left(\frac{1}{3}t + \mu\right) e^{2t}$, $\lambda, \mu \in \mathbb{R}$.

• Si c(t) est de la forme $p(t)e^{rt}$, où p est un polynôme de degré n:

Chercher une solution de la forme $q(t)e^{rt}$, où q est un polynôme de degré n si $r^2 + ar + b \neq 0$, et de degré n+1 si $r^2 + ar + b = 0$ (ou même de degré n+2 si r est racine double).

Exemple 42

Cherchons une solution de l'équation $y'' - y' - 2y = te^t$.

La solution générale de l'équation homogène associée est $y_h = \lambda e^{-t} + \mu e^{2t}$, $\lambda, \mu \in \mathbb{R}$.

Comme 1 n'est pas racine du polynôme caractéristique $r^2 - r - 2$, cherchons une solution particulière sous la forme $y_p = (\alpha t + \beta) e^t$.

On a $y_p' = (\alpha t + \alpha + \beta) e^t$, $y_p'' = (\alpha t + 2\alpha + \beta) e^t$. En remplaçant dans l'équation, on trouve $\alpha = \frac{-1}{2}$, $\beta = \frac{-1}{4}$. D'où la solution générale est $y = \frac{-1}{4} (2t+1) e^t + \lambda e^{-t} + \mu e^{2t}$, $\lambda, \mu \in \mathbb{R}$.

• Si c(t) est de la forme $d\cos(rt) + e\sin(rt)$:

Chercher une solution de la forme $\alpha \cos(rt) + \beta \sin(rt)$ (ou $t(\alpha \cos(rt) + \beta \sin(rt))$ si $\cos(rt)$ est solution de l'équation homogène).

Exemple 43

Cherchons une solution de l'équation $y'' - y' - 2y = \sin(2t)$.

La solution générale de l'équation homogène associée est $y_h = \lambda e^{-t} + \mu e^{2t}, \ \lambda, \mu \in \mathbb{R}$.

On cherche une solution sous la forme $y_p = \alpha \cos(2t) + \beta \sin(2t)$.

On a
$$y'_p = -2\alpha \sin(2t) + 2\beta \cos(2t)$$
, $y''_p = -4\alpha \cos(2t) - 4\beta \sin(2t)$.

En remplaçant dans l'équation, on trouve $-2(3\alpha + \beta)\cos(2t) + (2\alpha - 6\beta)\sin(2t) = \sin(2t)$, donc $3\alpha + \beta = 0$ et $2\alpha - 6\beta = 1$, d'où $\alpha = \frac{1}{20}$, $\beta = \frac{-3}{20}$.

Alors la solution générale est $y = \frac{1}{20}\cos{(2t)} - \frac{3}{20}\sin{(2t)} + \lambda e^{-t} + \mu e^{2t}, \ \lambda, \mu \in \mathbb{R}.$

• Si c(t) est la somme de plusieurs fonctions $c_1(t), \dots, c_k(t)$ qui sont chacune d'un des types ci-dessus :

Chercher pour i de 1 à k une solution particulière $s_i(t)$ de chacune des équations

$$y'' + ay' + by = c_i(t).$$

La fonction $s_1(t) + \cdots + s_k(t)$ sera solution particulière de y'' + ay' + by = c(t).

Exemple 44

Cherchons une solution de l'équation $y'' - y' - 2y = 2t^2 + e^{2t}$.

Une solution particulière de $y'' - y' - 2y = 2t^2$ est $y_{p_1} = -t^2 + t - \frac{3}{2}$.

Une solution particulière de $y'' - y' - 2y = e^{2t}$ est $y_{p_2} = \frac{1}{3}te^{2t}$.

Donc $y_p = -t^2 + t - \frac{3}{2} + \frac{1}{3}te^{2t}$ est solution particulière de $y'' - y' - 2y = 2t^2 + e^{2t}$.

Résumons les cas ci-dessus dans le tableau suivant.

Second membre $c\left(t\right)$	Solution particulière $y_{p}\left(t\right)$
	$y_p(t)$ polynôme de degré n si $b \neq 0$
c(t) = p(t) est un polynôme de degré n	de degré $n+1$ si $b=0$ et $a\neq 0$
	de degré $n+2$ si $a=b=0$
$c(t) = Ke^{rt}, \text{ avec } r^2 + ar + b \neq 0$	$y_p\left(t\right) = \alpha e^{rt}$
$t = Ke^{rt}$, avec $r^2 + ar + b = 0$	$y_p(t) = \alpha t e^{rt}$ si r racine simple.
$C(t) = Ne^{-t}, \text{ avec } t + at + b = 0$	$y_p(t) = \alpha t^2 e^{rt}$ si r racine double.
$c(t) = p(t) e^{rt}, r^2 + ar + b \neq 0, \deg p = n$	$y_p(t) = q(t) e^{rt}$, q polynôme de degré n
$c(t) = p(t) e^{rt}, r^2 + ar + b = 0, \deg p = n$	$y_p(t) = q(t) e^{rt}$, q polynôme de degré $n+1$
$c(t) = p(t) e^{rt}, r = \frac{-a}{2}, \deg p = n$	$y_p(t) = q(t) e^{rt}$, q polynôme de degré $n+2$
$c(t) = d\cos(rt) + e\sin(rt)$	$y_p(t) = \alpha \cos(rt) + \beta \sin(rt)$

3.4.2 Solution particulière par la méthode de variation des constantes

Comme nous l'avons vu dans le cas général des équations linéaires du second ordre, une solution particulière de l'équation y'' + ay' + by = c(t) peut être obtenue par la méthode de variation des constantes (voir page 33).

$$y = y_1 \int \frac{-c(t)y_2}{y_1 y_2' - y_1' y_2} dt + y_2 \int \frac{c(t)y_1}{y_1 y_2' - y_1' y_2} dt + \alpha y_1 + \beta y_2, \alpha, \beta \in \mathbb{R},$$

où y_1 et y_2 sont 2 solutions particulières indépendantes de l'équation homogène y'' + ay' + by = 0. Si r_1 et r_2 sont deux racines distinctes du polynôme caractéristique $r^2 + ar + b$, alors $y_1 = e^{r_1 t}$, $y_2 = e^{r_2 t}$. Dans ce cas, par intégration par parties, on peut écrire la solution générale de l'équation avec second membre en une seule formule

$$y = e^{r_1 t} \int \left(e^{(r_2 - r_1)t} \left(\int e^{-r_2 t} c(t) dt \right) \right) dt.$$

Exemple 45

Cherchons une solution de l'équation $y'' - y' - 2y = e^{-t}$.

L'équation caractéristique $r^2 - r - 2 = 0$ admet les racines $r_1 = -1$ et $r_2 = 2$. La solution générale est donc

$$y = e^{-t} \int \left(e^{3t} \left(\int e^{-2t} e^{-t} dt \right) \right) dt = e^{-t} \int \left(e^{3t} \left(-\frac{1}{3} e^{-3t} + \lambda \right) \right) dt$$
$$= e^{-t} \left(\frac{1}{3} \lambda e^{3t} - \frac{1}{3} t + \mu \right) = \frac{1}{3} \lambda e^{2t} + \left(\mu - \frac{1}{3} t \right) e^{-t}, \lambda, \mu \in \mathbb{R}.$$