USTHB 2021-2022 Semestre 1 Faculté de Mathématiques

Équations différentielles $3^{\text{ème}}$ année LAC

Examen final - 02 février 2022. Durée : 1 h 30

Nom et Prénom:

Matricule:

Exercice 1 (5 pts.): Résoudre les équations différentielles suivantes :

a)
$$t^3y' + t^2y = -1$$
, b) $(t-1)y'' + (t-2)y' = 0$.

Réponse.

a) L'équation différentielle $t^3y'+t^2y=-1$, est linéaire d'ordre 1, à coefficients non constants, avec second membre. L'équation homogène associée est $t^3y'+t^2y=0$. La fonction nulle est une solution. Les autres s'obtiennent en écrivant $\frac{y'}{y}=\frac{-1}{t}$ ou $\frac{dy}{y}=\frac{-dt}{t}$ et en prenant une primitive de chaque membre ; on obtient $\text{Log}\,|y\,(t)|=-\,\text{Log}\,|t|+K$, avec $K\in\mathbb{R}$, ou bien $y=\frac{C}{t},\ C\in\mathbb{R}$.

On peut utiliser la méthode de variation de la constante, c'est-à-dire, on cherche la solution générale sous la forme $y = \frac{C(t)}{t}$. Il vient

$$t^{3}\left(\frac{C'\left(t\right)\cdot t-C\left(t\right)}{t^{2}}\right)+t^{2}\frac{C\left(t\right)}{t}=-1,$$

et donc $C'(t) = \frac{-1}{t^2}$, ce qui permet, en intégrant de trouver $C(t) = \frac{1}{t}$ alors $y_p = \frac{C(t)}{t} = \frac{1}{t^2}$. La solution générale de l'équation $t^3y' + t^2y = -1$ est donc

$$y = \frac{\lambda}{t} + \frac{1}{t^2}$$
 avec $\lambda \in \mathbb{R}$.

b) Si on considère la nouvelle fonction inconnue u = y', l'équation (t - 1)y'' + (t - 2)y' = 0 se ramène à l'équation du premier ordre (t - 1)u' + (t - 2)u = 0.

Cette dernière équation est à variables séparées, que l'on peut écrire

$$\frac{du}{u} = -\frac{t-2}{t-1}dt \quad \text{ou bien } \frac{du}{u} = \left(-1 + \frac{1}{t-1}\right)dt.$$

En intégrant $\int \frac{du}{u} = \int \left(-1 + \frac{1}{t-1}\right) dt$ on trouve $\log |u| = -t + \log |t-1| + C$ ou beaucoup mieux

$$\text{Log } |u| = \text{Log } |\lambda(t-1)e^{-t}| \text{ où } C = \text{Log } |\lambda|.$$

Ce qui implique que

$$u = y' = \lambda (t - 1) e^{-t}, \ \lambda \in \mathbb{R}.$$

Par intégration par parties, on trouve $y\left(t\right)=-\lambda te^{-t}+\mu, \ \lambda,\mu\in\mathbb{R}.$

Exercice 2 (5 pts.): On se propose d'intégrer sur l'intervalle $]0,+\infty[$ l'équation différentielle de Riccati :

$$(E_1): y' + \frac{1}{t}y - \frac{1}{t^3}y^2 = 2t.$$

- a) Déterminer $a \in \mathbb{R}$ tel que $y_0(t) = at^2$ soit une solution particulière de (E_1) .
- b) Montrer que le changement de fonction inconnue $y(t) = y_0(t) + \frac{1}{z(t)}$ transforme l'équation (E_1) en une équation différentielle (E_2) linéaire d'ordre 1.
- c) En déduire les solutions de (E_1) sur $]0, +\infty[$.

Réponse.

a) Trouvons $a \in \mathbb{R}$ tel que $y_0(t) = at^2$ soit une solution particulière de (E_1) . En remplaçant y par at^2 dans l'équation de Riccati, on trouve

$$2at + at - a^2t = 2t.$$

Alors y_0 est solution si et seulement si $a^2 - 3a + 2 = 0$. En résolvant cette équation quadratique, on obtient la valeur de a:

$$a = \frac{3 \pm \sqrt{9 - 8}}{2} \Longrightarrow a = 1 \text{ ou } a = 2.$$

Ainsi, il existe même deux solutions particulières. Cependant, nous n'avons besoin que d'une seule d'entre elles. Alors on prend, par exemple $y_0(t) = t^2$ comme solution particulière de (E_1) .

b) Si z est une fonction C^1 ne s'annulant pas, on pose $y(t) = t^2 + \frac{1}{z(t)}$. Alors y est solution si et seulement si (z'(t)) 1 (z-1) 1 (z-1) 2

seulement si $\left(2t - \frac{z'(t)}{(z(t))^2}\right) + \frac{1}{t}\left(t^2 + \frac{1}{z(t)}\right) - \frac{1}{t^3}\left(t^2 + \frac{1}{z(t)}\right)^2 = 2t.$

Ce qui donne
$$2t - \frac{z'(t)}{(z(t))^2} + t + \frac{1}{tz(t)} - t - \frac{2}{tz(t)} - \frac{1}{t^3(z(t))^2} = 2t,$$

ou encore

$$-\frac{z'(t)}{(z(t))^2} - \frac{1}{tz(t)} - \frac{1}{t^3(z(t))^2} = 0.$$

En multipliant par $-t^3(z(t))^2$, on obtient que y est solution de (E_1) si et seulement si z vérifie $(E_2): t^3z' + t^2z = -1.$

c) D'après l'exercice 1) question a), la solution générale de l'équation (E_2) est $z(t) = \frac{\lambda}{t} + \frac{1}{t^2}$, $\lambda \in \mathbb{R}$. On a alors nécessairement

$$y(t) = t^{2}$$
 ou $y(t) = t^{2} + \frac{1}{z(t)} = t^{2} + \frac{t^{2}}{\lambda t + 1}, \quad \lambda \in \mathbb{R}.$

On va maintenant en déduire les solutions de (E_1) définies sur $]0, +\infty[$.

Soit $y = t^2 + \frac{t^2}{\lambda t + 1}$ une solution C^1 définie sur $]0, +\infty[$. Donc pour tout t > 0 on a $\lambda t + 1 \neq 0$ ce qui est possible si $\lambda \geq 0$.

Donc si y est solution de (E_1) , alors

$$y(t) = t^2$$
 ou $y(t) = t^2 + \frac{t^2}{\lambda t + 1} = t^2 \frac{\lambda t + 2}{\lambda t + 1}$ avec $\lambda \ge 0$.

Exercice 3 (6 pts.): On considère l'équation différentielle (E_3) : $(t-1)y''-ty'+y=(t-1)^2$ sur $]1,+\infty[$. Soit (E_4) : (t-1)y''-ty'+y=0 son équation homogène associée.

- a) Déterminer une solution de l'équation (E_4) de la forme $y_0(t) = e^{\alpha t}$ où $\alpha \in \mathbb{R}$.
- **b)** On pose alors $y(t) = e^{\alpha t} z(t)$ dans (E_4) . Quelle est alors l'équation différentielle vérifiée par z?
- c) En déduire les solutions de (E_4) sur $]1, +\infty[$.
- d) Déterminer une solution de l'équation (E_3) de la forme $y_p(t) = at^2 + b$ où $a, b \in \mathbb{R}$.
- e) En déduire les solutions de (E_3) sur $]1, +\infty[$.

Réponse.

a) Soit $y_0(t) = e^{\alpha t}$ une solution de (E_4) . En remplaçant dans l'équation différentielle (E_4) , on obtient $\alpha^2(t-1)e^{\alpha t} - \alpha t e^{\alpha t} + e^{\alpha t} = 0 \text{ ou bien } (\alpha-1)(\alpha t - \alpha - 1)e^{\alpha t} = 0.$

Si $\alpha = 1$, on a alors $t \mapsto y_0(t) = e^t$ est une solution de (E_4) .

b) On pose $y(t) = e^t z(t)$. Alors $y'(t) = (z(t) + z'(t)) e^t$ et $y''(t) = (z(t) + 2z'(t) + z''(t)) e^t$. En remplaçant dans l'équation différentielle (E_4) , on obtient

$$((t-1)(z(t)+2z'(t)+z''(t))-t(z(t)+z'(t))+z(t))e^{t}=0.$$

En simplifiant, on trouve l'équation différentielle vérifiée par z:(t-1)z''+(t-2)z'=0.

c) D'après l'exercice 1) question b), la solution générale de l'équation (t-1)z'' + (t-2)z' = 0 est $z(t) = \lambda t e^{-t} + \mu, \quad \lambda, \mu \in \mathbb{R}.$

Alors les solutions de l'équation différentielle homogène (E_4) sont

$$y_h(t) = e^t z(t) = \lambda t + \mu e^t, \quad \lambda, \mu \in \mathbb{R}.$$

d) Soit $y_p(t) = at^2 + b$ une solution de (E_3) . On a $y'_p(t) = 2at$ et $y''_p(t) = 2a$.

En remplaçant dans l'équation différentielle (E_3) , on obtient

$$2a(t-1) - t(2at) + at^2 + b = (t-1)^2$$
 ou bien $-(a+1)t^2 + 2(a+1)t + (b-2a-1) = 0$.

Alors $y_p(t) = at^2 + b$ est solution de (E_3) si et seulement si a + 1 = 0 et b - 2a - 1 = 0.

D'où a = b = -1.

On a alors $t \mapsto y_p(t) = -t^2 - 1$ est une solution de (E_3) .

e) Les solutions de l'équation non homogène (E_3) sont

$$y(t) = y_p(t) + y_h(t) = -t^2 - 1 + \lambda t + \mu e^t, \quad \lambda, \mu \in \mathbb{R}.$$

Exercice 4 (4 pts.): On considère le problème de Cauchy (P_1) : $\begin{cases} y' = \sqrt[3]{6|y|} \\ y(0) = 0 \end{cases}$.

a) Vérifier que la fonction y définie sur \mathbb{R} par

$$y(t) = \begin{cases} \frac{4}{3}t\sqrt{t} & \text{si } t \ge 0\\ 0 & \text{si } t < 0 \end{cases}$$

est solution du problème de Cauchy (P_1) .

b) Conclure.

Réponse.

a) On a donc pour t = 0,

$$\lim_{t \to 0^{+}} \frac{y\left(t\right) - y\left(0\right)}{t - 0} = \lim_{t \to 0^{+}} \frac{\frac{4}{3}t\sqrt{t} - 0}{t - 0} = 0 \text{ et } \lim_{t \to 0^{-}} \frac{y\left(t\right) - y\left(0\right)}{t - 0} = \lim_{t \to 0^{-}} \frac{0 - 0}{t - 0} = 0.$$

La fonction y est donc dérivable sur \mathbb{R} et on a

chitzienne au voisinage de y=0.

$$y'(t) = \begin{cases} 2\sqrt{t} & \text{si } t > 0 \\ 0 & \text{si } t = 0 \\ 0 & \text{si } t < 0 \end{cases}.$$

Alors

$$y' - \sqrt[3]{6|y|} = \begin{cases} 2\sqrt{t} - \sqrt[3]{8t\sqrt{t}} & \text{si } t > 0 \\ 0 & \text{si } t = 0 \\ 0 & \text{si } t < 0 \end{cases} = \begin{cases} 2\sqrt{t} - 2\sqrt{t} & \text{si } t > 0 \\ 0 & \text{si } t = 0 \\ 0 & \text{si } t < 0 \end{cases} \equiv 0.$$

Il vient que $y(t) = \begin{cases} \frac{4}{3}t\sqrt{t} & \text{si } t \geq 0 \\ 0 & \text{si } t < 0 \end{cases}$ est solution du problème de Cauchy (P_1) .

b) On remarque que la fonction identiquement nulle $y \equiv 0$ est une autre solution de notre problème. Non unicité de la solution vient du fait que la fonction $f(t,y) = \sqrt[3]{6|y|}$ n'est pas localement lips-