USTHB 2022-2023 Semestre 1 Faculté de Mathématiques

Équations différentielles $3^{\text{ème}}$ année LAC+Math

Examen final - 18 janvier 2023. Durée : 1 h 30

Nom et Prénom:

Matricule:

Exercice 1 (7 pts.) : Résoudre les équations différentielles suivantes puis déterminer l'unique fonction solution vérifiant les conditions initiales données.

a)
$$ty' = \alpha y + \beta$$
, $\alpha, \beta \in \mathbb{R}$, $y(1) = 0$.

b)
$$y'' - (\alpha + 1) y' + \alpha y = \alpha t - 1$$
, $\alpha \in \mathbb{R}^* \setminus \{1\}, y(0) = y'(0) = 0$.

Réponse.

a) L'équation différentielle $ty' = \alpha y + \beta t$, est linéaire d'ordre 1, à coefficients non constants, avec second membre. L'équation homogène associée est $ty' - \alpha y = 0$. La fonction nulle est une solution. Les autres s'obtiennent en écrivant $\frac{y'}{y} = \frac{\alpha}{t}$ ou $\frac{dy}{y} = \frac{\alpha}{t} dt$ et en prenant une primitive de chaque membre ; on obtient $\text{Log } |y(t)| = \text{Log } |t|^{\alpha} + K$, avec $K \in \mathbb{R}$, ou bien $y = Ct^{\alpha}$, $C \in \mathbb{R}$.

On peut utiliser la méthode de variation de la constante, c'est-à-dire, on cherche la solution générale sous la forme $y = C(t) t^{\alpha}$. Il vient $t(C'(t) t^{\alpha} + \alpha C(t) t^{\alpha-1}) = \alpha C(t) t^{\alpha} + \beta$, et donc $C'(t) = \beta t^{-1-\alpha}$, ce qui permet, en intégrant de trouver

$$C(t) = \frac{\beta}{-\alpha} t^{-\alpha} \text{ si } \alpha \neq 0 \text{ et } C(t) = \beta \operatorname{Log}|t| \text{ si } \alpha = 0.$$

La solution générale de l'équation $ty' = \alpha y + \beta$ est donc

$$y = \frac{-\beta}{\alpha} + \lambda t^{\alpha} \text{ si } \alpha \neq 0 \quad \text{et} \quad y = \lambda + \beta \operatorname{Log}|t| \text{ si } \alpha = 0 \text{ avec } \lambda \in \mathbb{R}.$$

Maintenant, si l'on cherche une solution vérifiant y(1) = 0, on doit avoir

$$\lambda = \frac{\beta}{\alpha} \text{ si } \alpha \neq 0 \quad \text{et} \quad \lambda = 0 \text{ si } \alpha = 0.$$

L'unique solution qui vérifie y(1) = 0 est donc

$$y = \frac{\beta}{\alpha} (t^{\alpha} - 1)$$
 si $\alpha \neq 0$ et $y = \beta \operatorname{Log} |t|$ si $\alpha = 0$.

b) L'équation différentielle en question, est linéaire d'ordre 2, à coefficients constants, avec second membre. L'équation homogène associée est $y'' - (\alpha + 1)y' + \alpha y = 0$. Son équation caractéristique est $r^2 - (\alpha + 1)r + \alpha = 0$ qui admet pour discriminant $(\alpha - 1)^2$ dont les racines sont $\pm (\alpha + 1)$. Les solutions de l'équation caractéristique sont donc $r_1 = \alpha, r_2 = 1$ et les solutions de l'équation homogène sont donc

$$y(t) = \lambda e^{t} + \mu e^{\alpha t} \text{ avec } \lambda, \mu \in \mathbb{R}.$$

Cherchons maintenant une solution particulière sous la forme $y_{p}\left(t\right)=at+b.$ On a

$$y'_{p}(t) = a, \quad y''_{p}(t) = 0.$$

Alors

$$y_p'' - (\alpha + 1) y_p' + \alpha y_p = -a (\alpha + 1) + \alpha (at + b) = \alpha at + \alpha b - a (\alpha + 1).$$

Par identification, on cherche a et b satisfaisant le système

$$\begin{cases} \alpha a = \alpha \\ \alpha b - a(\alpha + 1) = -1 \end{cases}.$$

La résolution de ce système donne a = b = 1. Les solutions de l'équation non homogène sont donc

$$y(t) = \lambda e^t + \mu e^{\alpha t} + t + 1, \ \lambda, \mu \in \mathbb{R}.$$

Les conditions y(0) = 0 et y'(0) = 0 donnent le système

$$\begin{cases} \lambda + \mu = -1 \\ \lambda + \alpha \mu = -1 \end{cases}$$

La résolution de ce système donne $\lambda = -1$ et $\mu = 0$ car $\alpha \neq 1$. L'unique solution vérifiant y(0) = y'(0) = 0 est donc

$$y\left(t\right) = -e^{t} + t + 1.$$

Exercice 2 (7 pts.) : On considère l'équation différentielle $(E_1): 2yy' + t^2 + y^2 + 2t = 0$.

Soit $\omega\left(t,y\right)=Pdt+Qdy$ avec $P=t^2+y^2+2t$ et Q=2y, la forme différentielle associée.

- a) Vérifier que ω n'est pas exacte.
- **b)** Chercher un facteur intégrant μ sous la forme $\mu\left(t,y\right)=\varphi\left(t\right)$. Indication : φ vérifie $\frac{\partial(\varphi P)}{\partial y}=\frac{\partial(\varphi Q)}{\partial t}$
- c) Trouver une fonction u(t,y) telle que $du = \frac{\partial u}{\partial t}dt + \frac{\partial u}{\partial y}dy = \varphi(t)\omega(t,y)$.
- d) En déduire la solution générale de l'équation différentielle (E_1) .
- e) En posant $v = y^2$, retrouver la solution générale de (E_1) .

Réponse.

a) Posons $P(t,y) = t^2 + y^2 + 2t$ et Q(t,y) = 2y. On a

$$\frac{\partial P}{\partial y} = 2y \text{ et } \frac{\partial Q}{\partial t} = 0.$$

On remarque que $\frac{\partial P}{\partial u} \neq \frac{\partial Q}{\partial t}$. La forme ω n'est donc pas exacte.

b) La fonction $\varphi(t)$ est facteur intégrant si et seulement si

$$\frac{\partial (\varphi P)}{\partial y} = \frac{\partial (\varphi Q)}{\partial t} \quad i.e. \quad \frac{\partial}{\partial y} (\varphi (t) (t^2 + y^2 + 2t)) = \frac{\partial}{\partial t} (\varphi (t) 2y).$$

Ceci équivaut à $2y\varphi(t) = 2y\varphi'(t)$. Ainsi $\varphi'(t) = \varphi(t)$ pour tout t. Donc $\varphi(t) = ke^t$ avec k constante. On peut choisir k = 1. Ainsi

$$\varphi(t)\omega(t,y) = (t^2 + y^2 + 2t)e^t dt + 2ye^t dy.$$

c) On cherche ensuite u telle que

$$\frac{\partial u}{\partial t} = (t^2 + y^2 + 2t) e^t$$
 et $\frac{\partial u}{\partial y} = 2ye^t$.

En intégrant la deuxième équation par rapport à y, on trouve

$$u\left(t,y\right) = y^{2}e^{t} + c\left(t\right).$$

En dérivant cette expression par rapport à t et en égalisant avec la première équation du système, on obtient

$$y^{2}e^{t} + c'(t) = (t^{2} + y^{2} + 2t)e^{t},$$

c'est-à-dire

$$c'(t) = \left(t^2 + 2t\right)e^t.$$

Il en résulte que $c(t) = t^2 e^t + c$ et donc que

$$u(t,y) = (t^2 + y^2) e^t + c$$
 avec c dans \mathbb{R} .

d) La solution générale de (E_1) est donc donnée sous forme

$$(t^2 + y^2) e^t = \lambda$$
 avec λ dans \mathbb{R} .

e) En posant $v=y^2$, 2yy'=v' et l'équation (E_1) devient

$$v' + v = -\left(t^2 + 2t\right),\,$$

dont la solution est $v = \lambda e^{-t} + at^2 + bt + c, \lambda \in \mathbb{R}$. On alors

$$v' + v = at^2 + (2a + b)t + b + c.$$

Par identification, on trouve a=1,b=c=0. On retrouve alors la solution

$$y^2 = \lambda e^{-t} - t^2$$
 ou bien $(t^2 + y^2) e^t = \lambda$ avec λ dans \mathbb{R} .

Exercice 3 (6 pts.): On considère l'équation différentielle $(E_2): y' = t^2 + y^2$.

- a) Montrer que (E_2) possède une solution maximale unique y qui vérifie y(0) = 0.
- b) Montrer que y est une fonction impaire.
- c) Étudier la monotonie, le signe et la concavité de y.
- d) Montrer que y est définie sur un intervalle borné de \mathbb{R} .
- e) Dresser le tableau de variation de y.

Réponse.

- a) La fonction $f:(t,y)\mapsto t^2+y^2$ est de classe \mathcal{C}^1 sur l'ouvert $U=\mathbb{R}^2$. Le théorème de Cauchy-Lipschitz assure l'existence d'une solution maximale unique au problème de Cauchy posé, solution définie sur un intervalle ouvert I=[a,b[contenant 0.
- b) Soit $z: t \mapsto -y(-t)$ définie sur un intervalle J =]-b, -a[symétrie de I par rapport à 0. La fonction z est dérivable et est encore solution du problème de Cauchy précédent car

$$z'(t) = y'(-t) = (-t)^2 + (y(-t))^2 = t^2 + (z(t))^2$$
 et $z(0) = y(-0) = 0$.

Donc $J =]-b, -a[\subset I =]a, b[$ et pour tout $t \in J, z(t) = y(t).$

Or puisque J est le symétrique de I, on observe J=I puis z=y. Ce qui montre que y est bien une fonction impaire.

c) On a $y'(t) = t^2 + (y(t))^2 \ge 0$ donc y est croissante. Comme y(0) = 0, alors y est négative sur \mathbb{R}_+ et positive sur \mathbb{R}_+ .

La fonction y est deux fois dérivable et

$$y''(t) = 2t + 2y(t)y'(t) = 2t + 2(t^2 + y^2(t))y(t).$$

Donc y'' est négative sur \mathbb{R}_- et positive sur \mathbb{R}_+ d'où la concavité de y sur \mathbb{R}_- et convexité de y sur \mathbb{R}_+ .

d) Supposons par l'absurde que y soit définie sur un intervalle non borné de \mathbb{R} , alors, du fait que y est impaire, elle serait définit sur \mathbb{R} tout entier. Dans ce cas, pour $t \geq 1$ on aura $y'(t) \geq 1 + y^2(t)$ ou encore $\frac{y'(t)}{1+y^2(t)} \geq 1$ donc en intégrant, on obtient $\operatorname{Arctg}(y(t)) \geq t - 1 + \operatorname{Arctg}(y(1))$. Ceci est absurde car $\operatorname{Arctg}(y(t)) \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

Donc que y est bien définie sur un intervalle borné de $\mathbb R$ qu'on notera I=]-a,a[où a>0.

e) La fonction y est définie, impaire, croissante sur I =]-a, a[.

Reste à étudier $\lim_{t\to a^-}y(t)$. Cette limite existe compte tenu de la monotonie de y et soit réelle, soit $+\infty$.

Si $\lim_{t\to a^-} y(t) = l \in \mathbb{R}$, alors posons y(a) = l et y(-a) = -l. La fonction y est alors continue sur [-a,a]. De plus $\lim_{|t|\to a} y'(t) = a^2 + l^2 \in \mathbb{R}$, donc ce prolongement est \mathcal{C}^1 sur [-a,a] et vérifie l'équation différentielle en a. Ceci est absurde car y est solution maximale.

Par suite $\lim_{t\to a^{-}}y\left(t\right)=+\infty$ et $\lim_{t\to -a^{+}}y\left(t\right)=-\infty$.



