USTHB 2015-2016 Semestre 1 Faculté de Mathématiques

Fonctions de plusieurs variables $3^{\rm \`eme}$ année LAC

Test n^0 2 - 08 décembre 2015. Durée : 30 minutes
Nom et Prénom:
Matricule:
$\underline{\text{Exercice 1 (7 pts.)}}:$
Soit <i>D</i> le parallélogramme de sommets $B_1 = (-1,0)$, $B_2 = (2,0)$, $B_3 = (0,2)$ et $B_4 = (3,2)$.
1) Dessiner le domaine D . 2) Calculer l'intégrale $\iint_{\mathcal{D}} (1 + a x - y) dxdy$, $a \in \mathbb{R}$.
3) En déduire l'aire de D .
Réponse.

......

Exercice 2 (6 pts.) : 1) En utilisant le changement en coordonnees spheriques, calculer les volumes : a) $V_1 = \iiint dx dy dz$, D_1 est la boule de centre $(0,0,0)$ et de rayon 2.
b) $V_2 = \iiint\limits_{D_2} dx dy dz$, D_2 est la boule de centre $(1,0,0)$ et de rayon 1.
2) En déduire le volume du solide $D = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 + z^2 \le 4, (x - 1)^2 + y^2 + z^2 \ge 1\}$.
Réponse.
2/3

Exercice 3 (2 pts.) : Soit ω la forme différentielle d'ordre 2 définie sur \mathbb{R}^3 par
$\omega(x,y,z) = (y^2 + yz) dx \wedge dy + x^2 dx \wedge dz - xy dy \wedge dz.$
Vérifier que ω est fermée.
Réponse.
3/3