Chapitre 3

Méthodes itératives de résolution de systèmes linéaires

3-1 Introduction

<u>Principe</u>: Soit un système linéaire Ax = b avec $A \in \mathcal{M}_n(\mathbb{K})$, det $A \neq 0$ et $b \in \mathbb{K}^n$. Une méthode itérative se présente sous la forme

$$u_0 \in \mathbb{K}^n$$
 et pour tout $k \ge 0$, $u_{k+1} = Bu_k + c$ (*)

avec $B \in \mathcal{M}_n(\mathbb{K})$ construite à partir de $A, c \in \mathbb{K}^n$ construit à partir de A et b.

3-2 Quelques méthodes itératives particulières

3-2.1) Principe général

On suppose que A = M - N avec M facile à inverser (diagonale ou triangulaire). Alors

$$Ax = b$$
 si et seulement si $x = M^{-1}Nx + M^{-1}b$

et on s'intéresse à la méthode itérative (1) telle que $B = M^{-1}N = I - M^{-1}A$ et $c = M^{-1}b$. Pratiquement, on résout les systèmes linéaires successifs :

pour tout
$$k$$
, $Mu_{k+1} = Nu_k + b$.

3-2.2) Méthode de Jacobi

$$A = D - E - F \text{ avec } D = \text{diag}(a_{kk}) \text{ et } a_{kk} \neq 0 \text{ pour } 1 \leq k \leq n, E = -\begin{pmatrix} 0 & 0 & \cdots & 0 \\ a_{21} & 0 & & 0 \\ \vdots & \ddots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n-1} & 0 \end{pmatrix}$$

(triangulaire inférieure) et
$$F = -\begin{pmatrix} 0 & a_{12} & \cdots & a_{1,n} \\ 0 & 0 & \ddots & \vdots \\ \vdots & & \ddots & a_{n-1,n} \\ 0 & \cdots & 0 & 0 \end{pmatrix}$$
 (triangulaire supérieure), qui est la décomposition par points de la matrice A .

 $\underline{\text{D\'efinition}:} \text{ On appelle } \textit{m\'ethode it\'erative de Jacobi par points} \text{ la m\'ethode it\'erative :}$

$$u_0 \in \mathbb{K}^n \text{ et } u_{k+1} = D^{-1}(E+F)u_k + D^{-1}b$$

 $J = D^{-1}(E + F) = I - D^{-1}A$ est appelée <u>matrice de Jacobi par points</u>.

En posant $u_k = (u_1^k, \dots, u_n^k)$, on est conduit à résoudre $Du_{k+1} = (D-A)u_k + b$, c'est-à-dire

$$\begin{cases} a_{11}u_1^{k+1} = -a_{12}u_2^k - a_{13}u_3^k \cdots - a_{1,n}u_n^k + b_1 \\ a_{22}u_2^{k+1} = -a_{21}u_1^k - a_{23}u_3^k \cdots - a_{2,n}u_n^k + b_2 \\ \vdots \\ a_{nn}u_n^{k+1} = -a_{n,1}u_1^k - a_{n,2}u_2^k \cdots - a_{n,n-1}u_{n-1}^k + b_n \end{cases}$$

3-2.3) Méthode de Gauss-Seidel

On peut améliorer la méthode précédente en utilisant les quantités déjà calculées :

$$\begin{cases} a_{11}u_1^{k+1} = -a_{12}u_2^k - a_{13}u_3^k \cdots - a_{1,n}u_n^k + b_1 \\ a_{22}u_2^{k+1} = -a_{21}\underline{u_1^{k+1}} - a_{23}u_3^k \cdots - a_{2,n}u_n^k + b_2 \\ \vdots \\ a_{nn}u_n^{k+1} = -a_{n,1}\underline{u_1^{k+1}} - a_{n,2}\underline{u_2^{k+1}} \cdots - a_{n,n-1}\underline{u_{n-1}^{k+1}} + b_n \end{cases}$$

ce qui s'écrit aussi $Du_{k+1} = Eu_{k+1} + Fu_k + b$, soit $u_{k+1} = (D-E)^{-1}Fu_k + (D-E)^{-1}b$ pour tout $k \ge 0$. (D-E) est inversible car $a_{kk} \ne 0$ pour tout k).

<u>Définition</u>: On appelle *méthode itérative de Gauss-Seidel par points* la méthode :

$$u_0 \in \mathbb{K}^n$$
 et, pour tout $k \ge 0$, $u_{k+1} = (D-E)^{-1}Fu_k + (D-E)^{-1}b$.

La matrice $G = (D - E)^{-1}F$ est appelée matrice de Gauss-Seidel par points.

3-2.4) Méthode de relaxation

<u>Définition</u>: On appelle <u>méthode itérative de relaxation par points</u> la méthode définie pour $w \neq 0$ par :

$$u_0 \in \mathbb{K}^n$$
 et, pour tout $k \ge 0$, $u_{k+1} = \left(\frac{D}{w} - E\right)^{-1} \left(\frac{1-w}{w}D + F\right)u_k + \left(\frac{D}{w} - E\right)^{-1}b$.

La matrice $R_w = \left(\frac{D}{w} - E\right)^{-1} \left(\frac{1 - w}{w}D + F\right)$ est appelée <u>matrice de relaxation par points</u>.

Remarques:

- Pour w = 1, $R_w = G$.
- Comme $a_{kk} \neq 0$ pour tout k, $\left(\frac{D}{w} E\right)$ est inversible.

Lorsque w > 1, on parle de <u>sur-relaxation</u>

Lorsque w < 1, on parle de <u>sous-relaxation</u>.

De manière pratique, la méthode de relaxation correspond à :

$$Du_{k+1} = (1-w)Du_k + wEu_{k+1} + wFu_k + wb$$

$$\begin{cases}
a_{11}u_1^{k+1} = a_{11}u_1^k - w(a_{11}u_1^k + a_{12}u_2^k + \dots + a_{1,n}u_n^k) + wb_1 \\
a_{22}u_2^{k+1} = a_{22}u_2^k - w(a_{21}u_1^{k+1} + a_{22}u_2^k + \dots + a_{2,n}u_n^k) + wb_2 \\
\vdots \\
a_{nn}u_n^{k+1} = a_{nn}u_n^k - w(a_{n,1}u_1^{k+1} + a_{n,2}u_2^{k+1} + \dots + a_{nn}u_n^k) + wb_n
\end{cases}$$

Le problème principal sera de déterminer w_0 tel que $w_0 = \underset{w \in \mathbb{R}^*}{\operatorname{argmin}} \rho(R_w)$, afin d'optimiser la convergence (si $\rho(R_w) < 1$).

3-3 Quelques rappels sur les normes vectorielles et normes matricielles

3-3.1) Norme vectorielle

<u>Définition</u>: Soit V un \mathbb{K} -espace vectoriel. Une <u>norme</u> sur V est une application $\| \cdot \| : V \to \mathbb{R}_+$ telle que:

- ||v|| = 0 si et seulement si v = 0
- pour tout $\lambda \in \mathbb{K}$, $\|\lambda v\| = |\lambda| \|v\|$ pour tout $(u, v) \in V^2$, $\|u + v\| \le \|u\| + \|v\|$.

Un espace vectoriel muni d'une norme est un espace vectoriel normé. Les normes usuelles de \mathbb{K}^n sont :

 $\bullet \|v\|_1 = \sum_{i=1} |v_i|$

• $||v||_2 = \sqrt{\sum_{i=1}^n v_i^2} = \sqrt{\langle v, v \rangle}$ (norme euclidienne si $\mathbb{K} = \mathbb{R}$)

 $\bullet \|v\|_p = \left(\sum_{i=1}^n |v_i|^p\right)^{1/p}$ $\bullet \|v\|_\infty = \max_{1 \le i \le n} |v_i|.$

Théorème 10 : Soit $p \in [1, +\infty[$. L'application $|| ||_p$ est une norme.

Preuve: voir Exercice 1.

L'inégalité triangulaire :

pour tous $u, v \in \mathbb{K}^n$, $||u + v||_p \le ||u||_p + ||v||_p$

est appelée inégalité de Minkowski.

Pour p et q tels que $\frac{1}{p} + \frac{1}{q} = 1$, l'inégalité

$$\sum_{i=1}^{n} |u_i v_i| \le ||u||_p ||v||_q$$

est appelée inégalité de Hölder.

Pour p = q = 2, cette inégalité est appelée inégalité de Cauchy-Schwarz.

Proposition : Soit $\| \|$ et $\| \|'$ deux normes définies sur un même \mathbb{K} -espace vectoriel Vde dimension finie. $\| \ \|$ et $\| \ \|'$ sont équivalentes : il existe C et $C' \in \mathbb{R}_+^*$ tels que, pour tout $v \in V$, $C'||v|| \le ||v||' \le C||v||$.

3-3.2) Normes matricielles

<u>Définition</u>: On appelle <u>norme matricielle</u> toute application $\| \| : \mathcal{M}_n(\mathbb{K}) \to \mathbb{R}_+$ telle que :

• ||A|| = 0 si et seulement si A = 0

- pour toutes $A, B \in \mathcal{M}_n(\mathbb{K}), \|A + B\| \leq \|A\| + \|B\|$
- pour toutes $A, B \in \mathcal{M}_n(\mathbb{K}), ||AB|| \leq ||A|| ||B||$.

Étant donnée une norme vectorielle sur \mathbb{K}^n , l'application :

$$\|\| \| : \mathcal{M}_n(\mathbb{K}) \to \mathbb{R}_+, \ A \to \sup_{v \in \mathbb{K}^n, v \neq 0} \frac{\|Av\|}{\|v\|} = \sup_{v \in \mathbb{K}^n, \|v\| < 1} \frac{\|Av\|}{\|v\|} = \sup_{v \in \mathbb{K}^n, \|v\| = 1} \|Av\|$$

est appelée norme matricielle subordonnée à la norme vectorielle || ||.

Proposition: Si || || est une norme matricielle subordonnée, alors,

pour toute $A \in \mathcal{M}_n(\mathbb{K})$, pour tout $v \in \mathbb{K}^n$, $||Av|| \le ||A|| ||v||$.

Théorème 11 : Soit
$$A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$$
. Alors

• $|||A|||_1 = \sup \frac{||Av||_1}{||v||_1} = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$

•
$$|||A|||_2 = \sup \frac{||Av||_2}{||v||_2} = \sqrt{\rho(A^*A)} = |||A^*||_2.$$

 $\| \|_2$ est invariante par transformation unitaire; si A est normale, $\| A \|_2 = \rho(A)$.

•
$$||A||_{\infty} = \sup \frac{||Av||_{\infty}}{||v||_{\infty}} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$

Preuve: Pour tout vecteur v,

$$||Av||_1 = \sum_i \left| \sum_j a_{ij} v_j \right| \le \sum_j |v_j| \sum_i |a_{ij}| \le \left(\max_j \sum_i |a_{ij}| \right) ||v||_1.$$

Pour montrer que le nombre $\max_{j} \sum |a_{ij}|$ est effectivement le plus petit nombre α pour lequel l'inégalité $||Av||_1 \le \alpha ||v||_1$ a lieu pour tout vecteur v, construisons un vecteur u (qui, bien entendu, dépend de la matrice A), tel que l'on ait l'égalité

$$||Au||_1 = \left(\max_j \sum_i |a_{ij}|\right) ||u||_1.$$

Il suffit de considérer le vecteur u de composantes

$$u_i = 0 \text{ pour } i \neq j_0, \quad u_{i_0} = 1,$$

où j_0 est un indice vérifiant

$$\max_{j} \sum_{i} |a_{ij}| = \sum_{i} |a_{ij_0}|.$$

De la même façon,

$$||Av||_{\infty} = \max_{i} \left| \sum_{j} a_{ij} v_{j} \right| \le \left(\max_{i} \sum_{j} |a_{ij}| \right) ||v||_{\infty}.$$

Soit i_0 un indice vérifiant

$$\max_{i} \sum_{j} |a_{ij}| = \sum_{j} |a_{i_0j}|.$$

Le vecteur u de composantes

$$u_j = \frac{\overline{a_{i_0,j}}}{|a_{i_0,j}|}$$
 si $a_{i_0,j} \neq 0$, $u_j = 1$ si $a_{i_0,j} = 0$,

vérifie

$$||Au||_{\infty} = \left(\max_{i} \sum_{j} |a_{ij}|\right) ||u||_{\infty},$$

ce qui règle le cas de la norme $\| \|_{\infty}$.

Puisque

$$|||A||_2^2 = \sup \frac{v^*A^*Av}{v^*v} = \sup R_{A^*A}(v),$$

le théorème 3 permet d'affirmer que la borne supérieure du quotient de Rayleigh de la matrice hermitienne A^*A est la plus grande valeur propre de cette matrice, qui se trouve être aussi son rayon spectral puisqu'elle est positive.

Montrons ensuite que $\rho(A^*A) = \rho(AA^*)$. Si $\rho(A^*A) > 0$, il existe un vecteur v tel que

$$v \neq 0$$
, et $A^*Av = \rho(A^*A)v$,

et on a $Av \neq 0$ car $\rho(A^*A) > 0$. Comme alors

$$Av \neq 0$$
, et $AA^*(Av) = \rho(A^*A)Av$,

il s'ensuit que

$$0 < \rho(A^*A) \le \rho(AA^*),$$

et donc $\rho(AA^*) = \rho(A^*A)$ puisque $(A^*)^* = A$. Si $\rho(A^*A) = 0$, on a aussi $\rho(AA^*) = 0$, sans quoi le raisonnement précédent montrerait que $\rho(A^*A) > 0$. On a donc, dans tous les cas,

$$|||A||_2^2 = \rho(A^*A) = \rho(A^*A) = |||A^*||_2^2$$

L'invariance de la norme || || ||₂ par transformation unitaire n'est que la traduction des égalités

$$\rho(A^*A) = \rho(U^*A^*AU) = \rho(A^*UU^*A) = \rho(U^*A^*UU^*AU).$$

Enfin, si la matrice A est normale, il existe une matrice unitaire U telle que

$$U^*AU = \operatorname{diag}(\lambda_i(A)) = D.$$

Dans ces conditions,

$$A^*A = (UDU^*)^*UDU^* = UD^*DU^*,$$

ce qui montre que

$$\rho(A^*A) = \rho(D^*D) = \max_i |\lambda_i(A)|^2 = (\rho(A))^2.$$

Théorème 12:

- i) Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $\| \|$ une norme matricielle. Alors $\rho(A) \leq \|A\|$.
- ii) Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $\varepsilon > 0$. Il existe une norme matricielle subordonnée $\| \| \|$ telle que

$$\rho(A) \le ||A|| \le \rho(A) + \varepsilon.$$

Preuve:

- i) Voir exercice 2.
- ii) D'après le théorème 2, il existe une matrice U telle que $U^{-1}AU$ soit triangulaire, supérieure par exemple :

$$U^{-1}AU = \begin{pmatrix} \lambda_1 & t_{12} & t_{13} & \cdots & t_{1,n} \\ & \lambda_2 & t_{23} & \cdots & t_{2,n} \\ & & \ddots & & \vdots \\ & & & \lambda_{n-1} & t_{n-1,n} \\ & & & & \lambda_n \end{pmatrix},$$

les scalaires λ_i étant les valeurs propres de la matrice A. À tout scalaire $\delta \neq 0$, associons la matrice

$$D_{\delta} = \operatorname{diag}(1, \delta, \delta^2, \cdots, \delta^{n-1}),$$

de sorte que

$$(UD_{\delta})^{-1}A(UD_{\delta}) = \begin{pmatrix} \lambda_1 & \delta t_{12} & \delta^2 t_{13} & \cdots & \delta^{n-1} t_{1,n} \\ & \lambda_2 & \delta t_{23} & \cdots & \delta^{n-2} t_{2,n} \\ & & \ddots & & \vdots \\ & & \lambda_{n-1} & \delta t_{n-1,n} \\ & & & \lambda_n \end{pmatrix}.$$

Étant donné $\varepsilon > 0$, fixons le nombre δ de telle façon que

$$\sum_{j=i+1}^{n} |\delta^{j-i} t_{i,j}| \le \varepsilon, \quad 1 \le i \le n-1.$$

Alors l'application

$$\| \| : B \to \|B\| = \| (UD_{\delta})^{-1} B (UD_{\delta}) \|_{\infty},$$

qui, naturellement, dépend de la matrice A et du nombre ε , répond à la question. En effet, on a, d'une part,

$$||A|| \le \rho(A) + \varepsilon,$$

d'après le choix de δ et de la définition de la norme matricielle $\| \| \|_{\infty}$ ($\| (c_{i,j}) \|_{\infty} = \max_{i} \sum_{j} |c_{ij}|$), et, d'autre part, c'est bien une norme matricielle ; on vérifie en effet que c'est la norme matricielle subordonnée à la norme vectorielle

$$v \in \mathbb{K}^n \mapsto \|(UD_\delta)^{-1}v\|_{\infty}.$$

Théorème 13 : L'application $\| \|_E : \mathcal{M}_n(\mathbb{K}) \to \mathbb{R}_+, A = (a_{ij}) \mapsto \sqrt{\text{Tr}(A^*A)} =$

 $\sqrt{\sum_{1 \leq i,j \leq n} |a_{i,j}|^2}$ est une norme matricielle non subordonnée invariante par transformation

unitaire et appelée norme de Frobenius. Elle vérifie :

pour tout
$$A \in \mathcal{M}_n(\mathbb{K}), \|A\|_2 \le \|A\|_E \le \sqrt{n} \|A\|_2$$
.

Théorème 14:

- Soit $\| \|$ une norme matricielle et $B \in \mathcal{M}_n(\mathbb{K})$ telle que $\|B\| < 1$. Alors I + B est inversible et $\|(I + B)^{-1}\| \le \frac{1}{1 \|B\|}$.
- Si une matrice de la forme I + B est <u>singulière</u> (non inversible), alors $||B|| \ge 1$ pour toute norme matricielle || ||.

3-4 Suites de vecteurs et de matrices

Théorème 15 : Soit $B \in \mathcal{M}_n(\mathbb{K})$. Les conditions suivantes sont équivalentes :

$$\lim_{k \to +\infty} B^k = 0 \tag{1}$$

$$\lim_{k \to +\infty} B^k v = 0 \text{ pour tout } v \in \mathbb{K}^n$$
 (2)

$$\rho(B) < 1 \tag{3}$$

$$||B|| < 1$$
 pour au moins une norme matricielle (4)

Preuve:

• Montrons que (1) implique (2).

Soit || || une norme vectorielle et || || || la norme matricielle subordonnée. Alors

pour tout
$$v \in \mathbb{K}^n$$
, $||B^k v|| \le ||B^k|| ||v||$ avec $\lim_{k \to +\infty} ||B^k|| = 0$.

Ainsi, $\lim_{k \to +\infty} ||B^k v|| = 0$ et donc $\lim_{k \to +\infty} B^k v = 0$.

• Montrons que (2) implique (3).

Supposons, par contraposée, que $\rho(B) \geq 1$. Alors, il existe $\lambda \in \mathbb{K}$, $|\lambda| \geq 1$ et $u \in \mathbb{K}^n$, $u \neq 0$ tel que $Bu = \lambda u$.

Par récurrence sur $k \ge 1$, on montre que

$$B^k u = B^{k-1}(Bu) = \lambda B^{k-1} u = \dots = \lambda^k u$$

donc $||B^k u|| = |\lambda|^k ||u||$ pour toute norme vectorielle || ||. Or, $\lim_{k \to +\infty} |\lambda|^k = +\infty$ ou 1, donc $\lim_{k \to +\infty} B^k u \neq 0$.

• Montrons que (3) implique (4).

Comme $\rho(B) < 1, \ 1 - \rho(B) > 0$. Posons $\varepsilon = \frac{1 - \rho(B)}{2}$. Par le théorème 12, il existe une norme matricielle subordonnée telle que $||B|| \le \rho(B) + \varepsilon = \frac{1 + \rho(B)}{2} < 1$.

 \bullet Montrons que (4) implique (1).

Par récurrence sur k, on voit que, pour tout $k \ge 1$,

$$||B^k|| \le ||B|| \, ||B^{k-1}|| \le \dots \le ||B||^k$$

donc, puisque ||B|| < 1, $\lim_{k \to +\infty} ||B^k|| = 0$, ce qui prouve que $\lim_{k \to +\infty} B^k = 0$.

Théorème 16:

Soit $B \in \mathcal{M}_n(\mathbb{K})$ et $\| \|$ une norme matricielle. Alors $\lim_{k \to +\infty} \|B^k\|^{1/k} = \rho(B)$.

Preuve: Exercice 5.

3-5 Convergence des méthodes étudiées

<u>Définition</u>: La méthode itérative (*) $(u_0, u_{k+1} = Bu_k + c)$ est dite convergente si

pour tout
$$u_0 \in \mathbb{K}^n$$
, $\lim_{k \to +\infty} u_k = x^*$

où x^* est la solution de Ax = b.

Remarque : On a alors $x^* = Bx^* + c$.

Théorème 17: Critère de convergence des méthodes itératives

Les propositions suivantes sont équivalentes :

- i) La méthode itérative (*) est convergente vers x^* tel que $x^* = Bx^* + c$;
- ii) $\rho(B) < 1$;
- iii) ||B|| < 1 pour au moins une norme matricielle || ||.

Preuve: voir Exercice 1 et Théorème 15.

Théorème 18:

• Soit $\| \|$ une norme vectorielle et soit $x^* \in \mathbb{K}^n$ tel que $x^* = Bx^* + c$. Soit la méthode itérative (*). Alors

$$\lim_{k \to +\infty} \left(\sup_{\|u_0 - x^*\| = 1} \|u_k - x^*\|^{1/k} \right) = \rho(B)$$

• Soit $\| \|$ une norme vectorielle et soit $x^* \in \mathbb{K}^n$ tel que $x^* = Bx^* + c = \tilde{B}x^* + \tilde{c}$. Soit les méthodes itératives (*) et

$$\tilde{u}_0 = u_0 \in \mathbb{K}^n \text{ et } \tilde{u}_{k+1} = \tilde{B}\tilde{u}_k + \tilde{c} \text{ pour tout } k \ge 0.$$
 (**)

Alors, pour tout $\varepsilon > 0$, il existe $\rho_{\varepsilon} > 0$ tel que,

si
$$k \ge \rho_{\varepsilon}$$
, alors $\sup_{\|u_0 - x^*\| = 1} \left(\frac{\|\tilde{u}_k - x^*\|}{\|u_k - x^*\|} \right)^{1/k} \ge \frac{\rho(\tilde{B})}{\rho(B) + \varepsilon}$.

Preuve:

•

$$\sup_{\|u_0 - x^*\| = 1} \|u_k - x^*\|^{1/k} = \sup_{\|u_0 - x^*\| = 1} \|B^k(u_0 - x^*)\|^{1/k} = \|B^k\|^{1/k} \to \rho(B)$$

d'après le théorème 16.

•

$$\sup_{\|u_0 - x^*\| = 1} \left(\frac{\|\tilde{u}_k - x^*\|}{\|u_k - x^*\|} \right)^{1/k} = \sup_{\|u_0 - x^*\| = 1} \left(\frac{\|\tilde{B}^k(u_0 - x^*)\|}{\|B^k(u_0 - x^*)\|} \right)^{1/k}$$

$$\geq \sup_{\|u_0 - x^*\| = 1} \frac{1}{\rho(B)} \|\tilde{B}^k(u_0 - x^*)\|^{1/k} = \frac{1}{\rho(B)} \|\tilde{B}^k\|^{1/k} \to \frac{\rho(\tilde{B})}{\rho(B)}$$

Soit $\varepsilon > 0$ et $\varepsilon' = \varepsilon \frac{\rho(\tilde{B})}{\rho(B)(\rho(B) + \varepsilon)} > 0$. Il existe ρ_{ε} tel que, si $k \ge \rho_{\varepsilon}$, alors

$$\sup_{\|u_0-x^*\|=1} \left(\frac{\|\tilde{u}_k-x^*\|}{\|u_k-x^*\|}\right)^{1/k} \geq \frac{\rho(\tilde{B})}{\rho(B)} - \varepsilon' = \frac{\rho(\tilde{B})}{\rho(B)} \left(1 - \varepsilon \frac{1}{\rho(B) + \varepsilon}\right) = \frac{\rho(\tilde{B})}{\rho(B)} \times \frac{\rho(B)}{\rho(B) + \varepsilon} = \frac{\rho(\tilde{B})}{\rho(B) + \varepsilon}$$

Théorème 19 : Soit A une matrice hermitienne définie positive, décomposée sous la forme A = M - N avec M inversible. Si $M^* + N$ est définie positive, alors $\rho(M^{-1}N) < 1$.

Preuve: Soit la norme vectorielle $\| \| : u \in \mathbb{K}^n \mapsto \sqrt{t\overline{u}Au}$ (qui est une norme car A est hermitienne définie positive) et $\| \| \|$ la norme matricielle subordonnée.

On a $M^* + N$ hermitienne car $M^* + N = A^* + N^* + N = A + N + N^* = M + N^*$.

Or,
$$||M^{-1}N|| = ||I - M^{-1}A|| = \sup_{\|u\|=1} ||u - M^{-1}Au||$$
.

Or $||u-M^{-1}Au||=||u-w||$ avec $w=M^{-1}Au$ si et seulement si $u=A^{-1}Mw$, si et seulement si $u^*=w^*M^*A^{-1}$ ($w\neq 0$ si $u\neq 0$). D'où

$$||u - M^{-1}Au||^{2} = (u - w)^{*}A(u - w)$$

$$= u^{*}Au - w^{*}Au - u^{*}Aw + w^{*}Aw$$

$$= 1 - w^{*}Mw - w^{*}M^{*}w + w^{*}Aw$$

$$= 1 - w^{*}(M^{*} + M - A)w = 1 - w^{*}(M^{*} + N)w$$

avec $w^*(M^* + N)w > 0$ car $M^* + N$ est hermitienne définie positive. Donc $||u - M^{-1}Au|| < 1$.

Or, sur le compact S(0,1), $u \mapsto ||u - M^{-1}Au||$ est continue et atteint donc ses bornes : il existe u_0 tel que $||u_0|| = 1$ et $||I - M^{-1}A|| = ||u_0 - M^{-1}Au_0|| < 1$.

Théorème 20 : (Ostrowski-Reich) Condition suffisante de convergence de la méthode par relaxation. Si la matrice A est hermitienne définie positive, la méthode de relaxation converge pour $w \in]0,2[$.

 $\begin{aligned} &Preuve:\ A=M-N=\left(\frac{D}{w}-E\right)-\left(\frac{1-w}{w}D+F\right).\ \text{On pose}\ M=\frac{D}{w}-E\ \text{et}\ N=\frac{1-w}{w}D+F.\\ &\text{Alors}\ M^*+N=\frac{D}{w}-E^*+\frac{1-w}{w}D+F=\frac{2-w}{w}D-E^*+F. \end{aligned}$

Or, comme A est hermitienne, $E^* = F$ donc $M^* + N = \frac{2-w}{w}D$.

Puisque A est hermitienne, ${}^te_kAe_k=a_{kk}>0$ implique que $\widetilde{D}=\operatorname{diag}(a_{11},\cdots,a_{nn})$ est définie positive donc M^*+N est définie positive si et seulement si $w\in]0,2[$.

Le théorème 19 permet de conclure.

Théorème 21 : Condition nécessaire de convergence de la méthode par relaxation.

- Le rayon spectral de la matrice de relaxation est tel que $\rho(R_w) \geq |w-1|$.
- Ainsi, si $w \notin]0,2[$, la méthode de relaxation ne converge pas.

Preuve:
$$R_w = \left(\frac{D}{w} - E\right)^{-1} \left(\frac{1 - w}{w}D + F\right)$$
. On a
$$\prod_{k=1}^{n} \lambda_k(R_w) = \det(R_w) = \left[\det\left(\frac{D}{w} - E\right)\right]^{-1} \det\left(\frac{1 - w}{w}D + F\right) = \frac{\left(\frac{1 - w}{w}\right)^n \det(D)}{\frac{1}{w^n} \det D} = (1 - w)^n.$$

Or, $\rho(R_w)^n \ge \prod_{k=1}^n |\lambda_k(R_w)| = |1-w|^n$, ce qui entraı̂ne les deux affirmations du théorème.

Exercices

Exercice 1 : Démonstration du Théorème 10.

L'objectif de cet exercice est de montrer que, pour tout $p \in [1, +\infty[, ||v||_p = \left(\sum_{i=1}^n |v_i|^p\right)^{\frac{1}{p}}$ est une norme.

- 1) Montrer que $\| \|_1$ est une norme.
- 2) En utilisant la convexité de la fonction exponentielle, montrer que :

pour tous
$$\alpha \ge 0$$
, $\beta \ge 0$, $\alpha \beta \le \frac{\alpha^p}{p} + \frac{\beta^q}{q}$,

où q est tel que $\frac{1}{p} + \frac{1}{q} = 1$.

- 3) En déduire que $\sum_{i=1}^{n} |u_i v_i| \le ||u||_p ||v||_q$, toujours avec $\frac{1}{p} + \frac{1}{q} = 1$.
- 4) Montrer alors que $||u+v||_p \le ||u||_p + ||v||_p$. [On utilisera la relation: $(|u_i| + |v_i|)^p = |u_i|(|u_i| + |v_i|)^{p-1} + |v_i|(|u_i| + |v_i|)^{p-1}$]

Exercice 2 : Démonstration du Théorème 12-i)

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $\| \|$ une norme matricielle. Montrer alors que $\rho(A) \leq \|A\|$.

Exercice 3 : Un exemple de norme matricielle non subordonnée (Théorème 13)

Soit l'application
$$\| \|_E : \begin{cases} \mathcal{M}_n \to \mathbb{R} \\ A \mapsto \|A\|_E = \left(\sum_{1 \le i,j \le n} |a_{ij}|^2\right)^{1/2} = \sqrt{\operatorname{tr}(A^*A)} \end{cases}$$
.

- 1) Montrer que $\| \|_E$ est une norme matricielle et non subordonnée pour $n \geq 2$.
- 2) Montrer que $\| \ \|_E$ est invariante par transformation unitaire et qu'elle vérifie :

$$||A||_2 \le ||A||_E \le \sqrt{n}||A||_2$$
 pour tout $A \in \mathcal{M}_n$.

Exercice 4: Démonstration du Théorème 14

- 1) Soit $\| \|$ une norme matricelle, B une matrice telle que $\|B\| < 1$ et I la matrice identité. Montrer alors que:
 - a) I + B est inversible.

b)
$$||(I+B)^{-1}|| \le \frac{1}{1-||B||}$$
.

2) Montrer que, si (I+B) est singulière, alors $||B|| \ge 1$ pour toute norme matricielle || ||.

Exercice 5 : Démonstration du Théorème 16.

Soit $A \in \mathcal{M}_n(\mathbb{C})$. Soit $\| \ \|$ une norme vectorielle sur \mathbb{C}^n et on note de la même façon la norme matricielle subordonnée.

- 1) Pour tout $\varepsilon > 0$, on pose $B_{\varepsilon} = \frac{A}{\rho(A) + \varepsilon}$; a) Montrer que $\lim_{p \to +\infty} \|B_{\varepsilon}^p\| = 0$.

 - b) Montrer que $\rho(A) \leq ||A^p||^{1/p}$. c) En déduire que $\lim_{p \to +\infty} ||A^p||^{1/p} = \rho(A)$.
- 2) Montrer que si A est symétrique, $\rho(A) = ||A||_2$.

Exercice 6 : Soit A une matrice d'ordre $n \geq 2$, inversible et à coefficients réels. On écrit la matrice A sous la forme A = M - N, où M est "facilement inversible" et on s'intéresse à la résolution du système linéaire Ax = b. Dans ce but, on introduit la suite $(x_k)_{k \in \mathbb{N}}$ définie par :

$$x_0$$
 donné dans \mathbb{R}^n et $x_{k+1} = M^{-1}Nx_k + M^{-1}b$.

- 1) Résultats généraux :
 - a) Montrer que si la suite converge, c'est nécessairement vers la solution de Ax = b.
- b) Soit $B = M^{-1}N$ et $\rho(B)$ son rayon spectral. Montrer l'équivalence des deux assertions suivantes:
 - i. Pour tout $x_0 \in \mathbb{R}^n$, $\lim_{k \to +\infty} x_k = x$ avec Ax = b
 - ii. $\rho(B) < 1$.
- c) Montrer que, s'il existe une norme matricielle subordonnée $\| \|$ telle que $\|B\| < 1$, alors la méthode itérative ci-dessus est convergente.
- 2) On suppose que tous les termes diagonaux de A sont non nuls et on considère la méthode itérative définie par le choix de M=D avec D matrice diagonale de $A:d_{ii}=a_{ii}$ pour $1\leq i\leq n$ et $d_{ij} = 0$ pour $i \neq j$.
 - a) Quel est le nom de cette méthode?
- b) Montrer que si A est à diagonale strictement dominante, c'est-à-dire si, pour tout $i \in \{1, \dots, n\}, |a_{ii}| > \sum_{j \neq i} |a_{ij}|, \text{ alors cette méthode converge.}$
- 3) On suppose que tous les termes diagonaux de A sont non nuls et on considère la méthode itérative définie pour une matrice M telle que :

$$m_{ij} = 0$$
 pour $1 \le i < j \le n$ et $m_{ij} = a_{ij}$ pour $1 \le j \le i \le n$.

- a) Quel est le nom de cette méthode?
- b) Montrer que si A est à diagonale strictement dominante, alors cette méthode converge.
- 4) Soit $A = \begin{pmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{pmatrix}$; que peut-on dire de la convergence des deux méthodes proposées précédemment ?

Exercice 7: Soit A une matrice tridiagonale de taille $n \geq 3$ dont les termes diagonaux sont non nuls. Soit D la matrice diagonale de A, E (resp. F) la matrice triangulaire inférieure (resp. supérieure) stricte de A. On a donc A = D + E + F; on pose $J = -D^{-1}(E + F)$ et $G = -(D + E)^{-1}F$.

1) Pour toute matrice $M=(m_{ij})_{1\leq i,j\leq n}$, on définit, pour tout réel non nul t, la matrice $M(t)=(m_{ij}(t))_{1\leq i,j\leq n}$, avec $m_{ij}(t)=t^{i-j}m_{ij}$ pour $1\leq i,j\leq n$. Montrer alors que :

pour tout
$$t \in \mathbb{R}^*$$
, $\det(M(t)) = \det(M)$.

- 2) On pose $M = F + \lambda^2(D + E)$. En utilisant les notations de la questions 1), écrire la matrice $M(1/\lambda)$ en fonction de D, E, F et λ .
- 3) Montrer que si P_J est le polynôme caractéristique de J et P_G celui de G, alors on a $P_G(\lambda^2) = \lambda^n P_J(\lambda)$. En déduire que $\rho(G) = (\rho(J))^2$ et conclure.