USTHB 2020-2021 Semestre 1 Faculté de Mathématiques

Analyse numérique 2^{ème} année Lic Maths

Série d'exercices n° 1 : Analyse d'erreurs

(À faire en TD les exercices 1 et 6 et les autres exercices sont supplémentaires)

- Exercice 1: Évaluer l'erreur absolue et l'erreur relative (%) commises en approximant le nombre π par chacune de ces quantités : (a) 3 (b) 3.14 (c) $\frac{22}{7}$.
- Exercice 2 : La surface A de la terre peut-être calculée par la formule $A=4\pi r^2$, où r désigne le rayon de la terre.
 - (a) Citer cinq (5) approximations qui sont utilisées pour le calcul de la surface avec cette formule sur un ordinateur.
 - (b) Si le rayon r = 6370 km est connu avec une précision de 2%, quelle est l'erreur relative sur la surface?
- Exercice 3: Approximer e^{π} en utilisant les 4 premiers termes de la série $e^{x} = 1 + x + \frac{x^{2}}{2!} + ... + \frac{x^{n}}{n!} + ...$ Quelle est l'erreur relative commise? Y a-t-il d'autres sources d'erreur lors de ce calcul?
- Exercice 4: Vous allerz calculer les deux racines de $ax^2 + bx + c = 0$ pour a = 0.05010, b = -98.78, et c = 5.015 à l'aide des deux formules suivantes :

(1)
$$x = \frac{2c}{-b \pm \sqrt{b^2 - 4ac}}$$
 (2) $x = \frac{-b \mp \sqrt{b^2 - 4ac}}{2a}$.

- (a) Montrer que les deux formules sont équivalentes.
- (b) Vérifier que les racines exactes sont $x_1 = 1971.605916$ et $x_2 = 0.05077069387$.
- (c) Calculer les deux solutions avec la première formule en utilisant 4 chiffres significatifs avec arrondi pour tous les calculs. Faire un calcul d'erreur.
- (d) Répéter le calcul avec la deuxième formule. Conclure.

Exercice 5: Soient les trois nombres réels x = 8.22, y = 0.00317 et z = 0.00432.

- (a) Représenter les nombres x,y et z avec virgule flottante.
- (b) En effectuant les calculs avec N=10 chiffres significatifs, calculer la somme x+y+z en faisant

(1)
$$(x+y)+z$$
 (2) $x+(y+z)$.

(c) Commenter les résultats obtenus. Conclure.

Exercice 6: Soit *P* le polynôme défini par $P(x) = x^5 - 15x^4 + 85x^3 - 225x^2 + 274x - 120$.

Le polynôme P peut être réécrit par l'algorithme de Horner sous la forme

$$P(x) = x \left(x \left(x \left(x \left(x - 15 \right) + 85 \right) - 225 \right) + 274 \right) - 120.$$

- a) Déterminer la valeur exacte de P(2.5) par calcul direct et par l'algorithme de Horner.
- b) Calculer les valeurs approchées de P(2.5) en utilisant 3 chiffres significatifs avec arrondi pour tous les calculs. Faire un calcul d'erreur.

Solution de l'exercice 1:

On rappelle que si x^* est une approximation de x, alors

$$E_a(x^*) = \Delta x = |x - x^*|$$
 et $E_r(x^*) = \delta x = \frac{E_a(x^*)}{|x|}$.

(a)
$$E_a(3) = |\pi - 3| = 0.14159265$$
 $E_r(3) = \frac{E_a(3)}{|\pi|} \times 100 = 4.51\%,$

(b)
$$E_a(3.14) = |\pi - 3.14| = 0.001\,592\,653\,6$$
 $E_r(3.14) = \frac{E_a(3.14)}{|\pi|} \times 100 = 0.050\,7\%,$

(c)
$$E_a\left(\frac{22}{7}\right) = \left|\pi - \frac{22}{7}\right| = 0.001\,264\,489\,3$$
 $E_r\left(3.14\right) = \frac{E_a\left(\frac{22}{7}\right)}{|\pi|} \times 100 = 0.040\,2\%,$

Solution de l'exercice 6:

a) Par un calcul direct : $P(x) = x^5 - 15x^4 + 85x^3 - 225x^2 + 274x - 120$. Pour x = 2.5 on a

$$P(2.5) = (2.5)^5 - 15 \times (2.5)^4 + 85 \times (2.5)^3 - 225 \times (2.5)^2 + 274 \times (2.5) - 120 = -1.40625$$

Par l'algorithme de Horner P(x) = x(x(x(x(x-15)+85)-225)+274)-120. Pour x = 2.5 on a

$$P(x) = 2.5(2.5(2.5(2.5(2.5-15)+85)-225)+274)-120 = -1.40625$$

b) En utilisant 3 chiffres significatifs avec arrondi:

Par un calcul direct P(2.5) = -1.41

Par l'algorithme de Horner P(2.5) = -1.41

Calcul d'erreur :

$$E_a(P(2.5)) = |P(2.5) - P(2.5)^*| = 0.00375$$

$$E_r(P(2.5)) = \frac{E_a(P(2.5))}{|P(2.5)|} \times 100 = 0.267\%$$