USTHB 2014-2015 Semestre 2 Faculté de Mathématiques

Test n^0 2 - 16 mai 2015.

Analyse numérique élémentaire 2^{ème} année Lic. Ing. Stat.

Durée: 30 minutes

Nom:	Matricule:
Prénom:	Groupe :

Exercice 1 (5 pts.):

Donner l'équation de la droite de la régression linéaire y=ax+b par la méthode des moindres carrés pour le tableau suivant :

Indication:
$$a = \frac{\sum\limits_{i=1}^{n}(x_i - \overline{x})(y_i - \overline{y})}{\sum\limits_{i=1}^{n}(x_i - \overline{x})^2}$$
 et $b = \overline{y} - a\overline{x}$ avec $\overline{x} = \frac{1}{n}\sum\limits_{i=1}^{n}x_i$ et $\overline{y} = \frac{1}{n}\sum\limits_{i=1}^{n}y_i$.

Réponse.

On a
$$n = 5$$
, $\overline{x} = \frac{1}{5} \sum_{i=1}^{5} x_i = \frac{1}{5} (1 + 2 + 3 + 4 + 5) = 3$ et $\overline{y} = \frac{1}{5} \sum_{i=1}^{5} y_i = \frac{1}{5} (3 + 5 + 7 + 6 + 9) = 6$.

Ensuite, nous aurons le tableau suivant :

x_i	1	2	3	4	5
y_i	3	5	7	6	9
$x_i - \overline{x}$	-2	-1	0	1	2
$y_i - \overline{y}$	-3	-1	1	0	3
$(x_i - \overline{x})(y_i - \overline{y})$	6	1	0	0	6
$(x_i - \overline{x})^2$	4	1	0	1	4

Alors
$$a = \frac{\sum\limits_{i=1}^{5} (x_i - \overline{x})(y_i - \overline{y})}{\sum\limits_{i=1}^{5} (x_i - \overline{x})^2} = \frac{6 + 1 + 0 + 0 + 6}{4 + 1 + 0 + 1 + 4} = \frac{13}{10} = 1.3 \text{ et } b = \overline{y} - a\overline{x} = 6 - \frac{13}{10} \times 3 = \frac{21}{10} = 2.1 \text{ .}$$

Par conséquent, la droite de la régression linéaire est $y = \frac{13}{10}x + \frac{21}{10}$ ou y = 1.3x + 2.1.

Exercice 2 (6 pts.):

Calculer Log (4) = $\int_{1}^{4} \frac{1}{x} dx$ par les méthodes d'intégration des trapèzes et de Simpson pour n = 6.

Calculer l'erreur commise dans chaque cas.

Réponse. On a
$$a = 1, b = 4, n = 6, h = \frac{b-a}{n}, x_i = a+ih, 0 \le i \le n$$
 et $f(x) = \frac{1}{x}$.

Donc
$$h = \frac{4-1}{6} = \frac{1}{2}$$
, $x_0 = 1$, $x_1 = \frac{3}{2}$, $x_2 = 2$, $x_3 = \frac{5}{2}$, $x_4 = 3$, $x_5 = \frac{7}{2}$ et $x_6 = 4$.

Alors on a le tableau suivant :

i	0	1	2	3	4	5	6
x_i	1	$\frac{3}{2}$	2	$\frac{5}{2}$	3	$\frac{7}{2}$	4
$y_i = f\left(x_i\right) = \frac{1}{x_i}$	1	$\frac{2}{3}$	$\frac{1}{2}$	<u>2</u> 5	$\frac{1}{3}$	$\frac{2}{7}$	$\frac{1}{4}$

Calculons Log (4) = $\int_{1}^{4} \frac{1}{x} dx$ par les méthodes des trapèzes et de Simpson. On a

$$T_{6}(f) = \frac{h}{2} \left[f(a) + 2 \sum_{i=1}^{5} f(x_{i}) + f(b) \right] = \frac{\frac{1}{2}}{2} \left[1 + 2 \left(\frac{2}{3} + \frac{1}{2} + \frac{2}{5} + \frac{1}{3} + \frac{2}{7} \right) + \frac{1}{4} \right]$$
$$= \frac{1}{4} \left[1 + \frac{153}{35} + \frac{1}{4} \right] = \frac{787}{560} \approx 1.405357143 ,$$

et

$$S_{6}(f) = \frac{h}{3} \left[f(a) + 2 \sum_{i=1,i \text{ pair}}^{5} f(x_{i}) + 4 \sum_{i=1,i \text{ impair}}^{5} f(x_{i}) + f(b) \right]$$

$$= \frac{\frac{1}{2}}{3} \left[1 + 2 \left(\frac{1}{2} + \frac{1}{3} \right) + 4 \left(\frac{2}{3} + \frac{2}{5} + \frac{2}{7} \right) + \frac{1}{4} \right]$$

$$= \frac{1}{6} \left[1 + \frac{5}{3} + \frac{568}{105} + \frac{1}{4} \right] = \frac{3497}{2520} \approx 1.387698413.$$

Pour l'erreur commise, on a

$$e_R\left(T_6\right) = \frac{|I\left(f\right) - T_6\left(f\right)|}{|I\left(f\right)|} = \frac{|\text{Log}\left(4\right) - 1.405357143|}{|\text{Log}\left(4\right)|} = \frac{|1.386294361 - 1.405357143|}{1.386294361}$$
$$= \frac{0.019062782}{1.386294361} \simeq 0.0138 = 1.38\%$$

et

$$e_R(S_6) = \frac{|I(f) - S_6(f)|}{|I(f)|} = \frac{|\text{Log}(4) - 1.387698413|}{|\text{Log}(4)|} = \frac{|1.386294361 - 1.387698413|}{1.386294361}$$
$$= \frac{0.001404052}{1.386294361} \simeq 0.0010 = 0.10\%.$$

Exercice 3 (4 pts.):

Approcher f'(3) en utilisant les formules de différences progressives, régressives et centrées pour le tableau suivant :

x_i	1	2	3	4	5
$y_i = f(x_i) = \frac{1}{x_i}$	1	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$

Calculer l'erreur commise dans chaque cas.

Réponse.

Formule de différences progressives :

$$f'_p(x_i) = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} \longrightarrow f'_p(3) = \frac{f(4) - f(3)}{4 - 3} = \frac{\frac{1}{4} - \frac{1}{3}}{4 - 3} = -\frac{1}{12}.$$

Formule de différences régressives :

$$f'_r(x_i) = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} \longrightarrow f'_r(3) = \frac{f(3) - f(2)}{3 - 2} = \frac{\frac{1}{3} - \frac{1}{2}}{4 - 3} = -\frac{1}{6}.$$

Formule de différences centrées :

$$f'_c(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{x_{i+1} - x_{i-1}} \longrightarrow f'_c(3) = \frac{f(4) - f(2)}{4 - 2} = \frac{\frac{1}{4} - \frac{1}{2}}{4 - 2} = -\frac{1}{8}.$$

La dérivée de f est $f'(x) = \frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2}$, alors la valeur exacte de f'(3) est $-\frac{1}{9}$.

Pour l'erreur commise, on a

$$e_{R}(DP) = \frac{\left|f'(3) - f'_{p}(3)\right|}{\left|f'(3)\right|} = \frac{\left|-\frac{1}{9} - \left(-\frac{1}{12}\right)\right|}{\left|-\frac{1}{9}\right|} = \frac{1}{4} = 25\%,$$

$$e_{R}(DR) = \frac{\left|f'(3) - f'_{r}(3)\right|}{\left|f'(3)\right|} = \frac{\left|-\frac{1}{9} - \left(-\frac{1}{6}\right)\right|}{\left|-\frac{1}{9}\right|} = \frac{1}{2} = 50\%,$$

$$e_{R}(DC) = \frac{\left|f'(3) - f'_{c}(3)\right|}{\left|f'(3)\right|} = \frac{\left|-\frac{1}{9} - \left(-\frac{1}{8}\right)\right|}{\left|-\frac{1}{9}\right|} = \frac{1}{8} = 12.5\%.$$